Skip to main content
Log in

Relevant material characterization for load prediction in incremental forming

  • ESAFORM 25 Years On
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Robotic incremental sheet forming has arisen a recent industrial interest, as a more flexible and cost-effective solution to the process using rigid computer numerical control (CNC) machines. However, the numerical prediction of the forming loads and final geometry coupled to an elastic modeling of the robot is essential to optimize the robot trajectory and thus to ensure the geometrical accuracy of the final part. Within this context, the aim of this study is to investigate the accuracy of the load prediction in the case of a single point incremental forming process of a commercially pure (CP) titanium alloy sheet. The mechanical behavior is characterized at room temperature under two strain states, i.e., uniaxial and biaxial tension, and a truncated cone of the same material is obtained by single point incremental forming. A 3D cell records all the components of the applied load during the forming and the part is laser scanned at the end of the process, though still clamped along the outer edge. A numerical model of the process is developed assuming some symmetries to reduce the computational time. The influence of the hardening law, either identified from the uniaxial or biaxial tensile tests, on the forming load prediction is investigated, with a focus on the strain path during single point incremental forming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Belchior J, Leotoing L, Guines D, Courteille E, Maurine P (2014) A process/machine coupling approach: application to robotized incremental sheet forming. J Mater Process Technol 214(8):1605–1616. https://doi.org/10.1016/j.jmatprotec.2014.03.005

    Article  Google Scholar 

  2. Belchior J, Guillo M, Courteille E, Maurine P, Léotoing L, Guines D (2013) Off-line compensation of the tool path deviations on robotic machining: application to incremental sheet forming. Robotics and Computer-Integrated Manufacturing 29:58–69. https://doi.org/10.1016/j.rcim.2012.10.008

    Article  Google Scholar 

  3. Ambrogio G, Costantino I, De Napoli L, Filice L, Fratini L, Muzzupappa M (2004) Influence of some relevant process parameters on the dimensional accuracy in incremental forming: a numerical and experimental investigation. J Mater Process Technol 154:501–507. https://doi.org/10.1016/j.jmatprotec.2004.04.139

    Article  Google Scholar 

  4. Han F, MO J, Qi H (2013) Springback prediction for incremental sheet forming based on FEM-PSONN technology. Trans Nonferrous Met Soc China 23:1061–1071. https://doi.org/10.1016/S1003-6326(13)62567-4

    Article  Google Scholar 

  5. Duflou J, Habraken AM, Cao J, Malhotra R, Bambach M, Adams D, Vanhove H, Mohammadi A, Jeswiet J (2018) Single point incremental forming: state-of-the-art and prospects. Int J Mater Forming 11:743–773. https://doi.org/10.1007/s12289-017-1387-y

    Article  Google Scholar 

  6. Henrard C (2008) Numerical Simulations of the Single Point Incremental Forming Process, PhD thesis, Université de Liège, Belgium

  7. Emmens WC, Van Den Boogard AV (2009) An overview of stabilizing deformation mechanisms in incremental sheet forming. J Mater Process Technol 209:3688–3695. https://doi.org/10.1016/j.jmatprotec.2008.10.003

    Article  Google Scholar 

  8. Yamashita M, Gotoh M, Atsumi SY (2008) Numerical simulation of incremental forming of sheet metal. J Mater Process Technol 199:163–172. https://doi.org/10.1016/j.jmatprotec.2007.07.037

    Article  Google Scholar 

  9. Fratini L, Ambrogio G, Di Lorenzo R, Filice L, Micari F (2005) Three-dimensional FE simulation of single point incremental forming: experimental evidences and process design improving. VIII International Conference on Computational Plasticity, Complas VIII, Barcelona

  10. Ceretti E, Giardini C, Attanasio A (2004) Experimental and simulative results in sheet incremental forming on CNC machines. J Mater Process Technol 152:176–184. https://doi.org/10.1016/j.jmatprotec.2004.03.024

    Article  Google Scholar 

  11. Hadoush A, Van Den Boogard AH (2009) Substructuring in the implicit simulation of single point incremental forming. Int J Mater Form 2:181–189. https://doi.org/10.1007/s12289-009-0402-3

    Article  Google Scholar 

  12. Sena JIV, De Sousa RA, Valente RAF (2010) Single point incremental forming simulation with an enhanced assumed strain solid-shell finite element formulation. Int J Mater Form 3:963–966. https://doi.org/10.1007/s12289-010-0929-3

    Article  Google Scholar 

  13. Belchior J, Guines D, Leotoing L, Ragneau E (2013) Force prediction for correction of robot tool path in single point incremental forming Key Eng Mater 554:1282–1289. https://doi.org/10.4028/www.scientific.net/KEM.554-557.1282

  14. Abdelkefi A, Guines D, Léotoing L, Thuillier S (2019) Influence of the mechanical model of titanium T40 on the predicted forces during incremental forming process. AIP Conf Proc 2113:170010. https://doi.org/10.1063/1.5112726

    Article  Google Scholar 

  15. Bouffioux C, Henrard C, Gu J, Duflou J, Habraken AM, Sol H (2007) Development of an inverse method for identification of materials parameters in the single point incremental forming process. IDDRG

  16. Belchior J (2013) Développement d’une approche couplée matériau/structure machine: application au formage incrémental robotisé, PhD thesis, INSA Rennes

  17. Flores P, Duchene L, Bouffioux C, Lelotte T, Henrard C, Pernin N, Habraken AM (2007) Model identification and FE simulations: effect of different yield loci and hardening laws in sheet forming. Int J Plast 23:420–449. https://doi.org/10.1016/j.ijplas.2006.05.006

    Article  MATH  Google Scholar 

  18. Said LB, Mars J, Wali M, Dammak F (2017) Numerical prediction of the ductile damage in single point incremental forming process. Inter J Mech Sci 131:546–558. https://doi.org/10.1016/j.ijmecsci.2017.08.026

    Article  Google Scholar 

  19. Duc-Toan N, Jin-Gee P, Young-Suk K (2010) Combined kinematic/isotropic hardening behavior study for magnesium alloy sheets to predict ductile fracture of rotational incremental forming. Int J Mater Form 3:939–942. https://doi.org/10.1007/s12289-010-0923-9

    Article  Google Scholar 

  20. Benedetti M, Fontanari V, Monelli B, Tassan B (2017) Single-point incremental forming of sheet metals: Experimental study and numerical simulation. Proceedings of the Institution of Mechanical Engineers. J Eng Manuf 231:301–312. https://doi.org/10.1177/0954405415612351

  21. Henrard C, Bouffioux C, Eyckens P, Sol H, Duflou JR, Van Houtte P, Habraken AM (2011) Forming forces in single point incremental forming: prediction by finite element simulations, validation and sensitivity. Comput Mech 47:573–590. https://doi.org/10.1007/s00466-010-0563-4

    Article  Google Scholar 

  22. Liu W, Guines D, Leotoing L, Ragneau E (2016) Identification of strain rate-dependent mechanical behaviour of DP600 under in-plane biaxial loadings. Mat Sci Eng A 676:366–376. https://doi.org/10.1016/j.msea.2016.08.125

    Article  Google Scholar 

  23. Eyckens P, Belkassem B, Henrard C, Gu J, Sol H, Habraken AM, Van Houtte P (2011) Strain evolution in the single point incremental forming process: digital image correlation measurement and finite element prediction. Inter J Mater Form 4:55–71. https://doi.org/10.1007/s12289-010-0995-6

    Article  Google Scholar 

  24. Emmens WC, Van Den Boogaard AH (2009) An overview of stabilizing deformation mechanisms in incremental sheet forming. J Mater Process Technol 209:3688–3695. https://doi.org/10.1016/j.jmatprotec.2008.10.003

    Article  Google Scholar 

  25. Neto DM, Martins JMP, Oliveira MC, Menezes LF, Alves JL (2016) Evaluation of strain and stress states in the single point incremental forming process. Int J Advan Manuf Techn 85(1–4):521–534. https://doi.org/10.1007/s00170-015-7954-9

    Article  Google Scholar 

  26. Butuc M, Barlat F, Gracio J, Vincze G (2013) A theoretical study of the effect of the double strain path change on the forming limits of metal sheet. Key Eng Mater 554:127–138. https://doi.org/10.4028/www.scientific.net/KEM.554-557.127

    Article  Google Scholar 

  27. Zhang S, Leotoing L, Guines D, Thuillier S, Zang SL (2014) Calibration of anisotropic yield criterion with conventional tests or biaxial test. Int J Mech Sci 85:142–151. https://doi.org/10.1016/j.ijmecsci.2014.05.020

    Article  Google Scholar 

  28. Leotoing L, Guines D (2015) Investigations of the effect of strain path changes on forming limit curves using an in-plane biaxial tensile test. Int J Mech Sci 99:21–28. https://doi.org/10.1016/j.ijmecsci.2015.05.007

    Article  Google Scholar 

  29. Song X (2018) Identification of forming limits of sheet metals with an in-plane biaxial tensile test, PhD thesis, INSA Rennes

  30. Bannon BP, Mild EE (1983) Titanium Alloys for Biomaterial Application: An Overview, Titanium Alloys in Surgical Implants. A Symposium ASTM STP 796:7–16. https://doi.org/10.1520/STP28931S

    Article  Google Scholar 

  31. Saidi B, Laurence G, Boulila M, Cherouat A, Nasri R (2016) Etude expérimentale et numérique des efforts lors du formage incrémental de tôles en titane. JET 2016, Hammamet, Tunisie

  32. Sakhtemanian MR, Honarpisheh M, Amini S (2018) Numerical and experimental study on the layer arrangement in the incremental forming process of explosive-welded low-carbon steel/CP-titanium bimetal sheet. Int J Adv Manuf Techn 95:3781–3796. https://doi.org/10.1007/s00170-017-1462-z

    Article  Google Scholar 

  33. Araújo R, Teixeira P, Silva M, Reis A, Martins PA (2013) Single point incremental forming of a medical implant. Key Eng Mater 1388–1393 104028. https://www.scientific.net/kem.554-557.1388. Accessed 10 Mar 2022

  34. Araújo R, Teixeira P, Montanari L, Reis A, Silva MB, Martins PA (2014) Single point incremental forming of a facial implant. Prosthet Orthot Int 38:369–378. https://doi.org/10.1177/0309364613502071

    Article  Google Scholar 

  35. Pham QT, Lee MG, Kim YS (2019) Characterization of the isotropic-distortional hardening model and its application to commercially pure titanium sheets. Int J Mech Sci 160:90–102. https://doi.org/10.1016/j.ijmecsci.2019.06.023

    Article  Google Scholar 

  36. Ishiki M, Kuwabara T, Hayashida Y (2011) Measurement and analysis of differential work hardening behavior of pure titanium sheet using spline function. Int J Mater Forming 4:193–204. https://doi.org/10.1007/s12289-010-1024-5

  37. Baral M, Hama T, Knudsen E, Korkolis YP (2018) Plastic deformation of commercially-pure titanium: experiments and modeling. Int J Plas 105:164–194. https://doi.org/10.1016/j.ijplas.2018.02.009. Accessed 10 Mar 2022

  38. Bathini U (2010) A Study of Microstructure, Tensile Deformation, Cyclic Fatigue and Final Fracture Behavior of Commercially Pure Titanium and a Titanium Alloy. PhD Thesis. https://etd.ohiolink.edu/. Accessed 10 Mar 2020

  39. Revil-Baudard B (2010) Simulation du comportement mécanique des alliages de titane pour les procédés de mise en forme à froid. PhD thesis, Mines ParisTech (in French)

  40. Hannon A, Tiernan P (2008) A review of planar biaxial tensile test systems for sheet metal. J Mater Process Technol 198:1–13. https://doi.org/10.1016/j.jmatprotec.2007.10.015

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Région Bretagne for the financial support via grant SAD17027-Ti4FI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Thuillier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelkefi, A., Guines, D., Léotoing, L. et al. Relevant material characterization for load prediction in incremental forming. Int J Mater Form 15, 23 (2022). https://doi.org/10.1007/s12289-022-01676-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12289-022-01676-6

Keywords

Navigation