Skip to main content
Log in

Multi-source sintering transfer learning in small dataset sintering prediction scenario

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The purpose of this paper is to achieve fast densification prediction of target materials and particularly of difficult-to-sintering materials in small dataset sintering scenarios. A multi-source sintering transfer learning framework based on the domain adversarial network (DANN) was proposed to achieve multi-source sintering transfer learning. Further, a calibration method was presented to enhance the reliability of the integrated multi-source DANN (IMDANN), where DANN was applied as a test benchmark. The results indicate that IMDANN is significantly better than the test benchmark under all the test conditions. Error analysis illustrates that the root mean square error (RMSE) of IMDANN’s prediction converges to approximately 5% in the target domain, and the average prediction error is reduced by 56.5%. With an increasing number of source domains following the correlation criterion, the minimum number of source domains required for convergence is only 3–4. Compared to DANN, the calibrated IMDANN has high reliability and realises the cross-domain transfer of sintering knowledge with a small dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Su HH, Johnson DL (1996) Master Sintering Curve: A Practical Approach to Sintering. J Am Ceram Soc 79(12):3211–3217

    Article  Google Scholar 

  2. Bothara MG, Atre SV, Park S-J, German RM, Sudarshan TS, Radhakrishnan R (2010) Metallurg Mater Trans-Phys Metallurg Mater Sci 41A:3252–3261

    Article  Google Scholar 

  3. Enneti RK, Bothara MG, Park S-J, Atre SV (2012) Ceramics Int 38(5):4369–4372

    Article  Google Scholar 

  4. Pouchly V, Maca K, Xiong Y, Shen JZ (2012) Master Sintering Surface: A practical approach to its construction and utilization for Spark Plasma Sintering prediction. Sci Sinter 44(2):169–175

    Article  Google Scholar 

  5. Frueh T, Ozer IO, Poterala SF, Lee H, Kupp ER, Compson C, Atria J, Messing GL (2018) A critique of master sintering curve analysis. J Eur Ceram Soc 38(4):1030–1037

    Article  Google Scholar 

  6. Hu K, Li X, Qu S, Yang C, Li Y (2014) Acta Metall Sin 50:727–736

    Google Scholar 

  7. Son Y (2020) Hyesoo Belinda Chung and Sukbin Lee. J Eur Ceram Soc 40(8):3158–3171

    Article  Google Scholar 

  8. Biswas S, Schwen D, Wang H (2018) Maria Okuniewski and Vikas Tomar. Comput Mater Sci 148:307–319

    Article  Google Scholar 

  9. Shi JL (1999) J Mater Sci 34(15):3801–3812

    Article  Google Scholar 

  10. Varol T (2013) Aykut Canakci and Sukru Ozsahin. Composites Part B-Eng 54:224–233

    Article  Google Scholar 

  11. Seputra YEA, Soegijono B (2019) In International Conference on Condensed Matters and Advanced Materials, ed. N Mufti

  12. Jana DC, Sundararajan G, Chattopadhyay K (2018) Metallurg Mater Trans A-Phys Metall Mater Sci 49A:5599–5606

    Article  Google Scholar 

  13. Wu Z, Xiaomin Z, Zhipeng Z, Hengjia Z, Hongwu T, Yuan L (2020) Ceramics Int 46:25200–25210

    Article  Google Scholar 

  14. Long M, Cao Y, Cao Z (2019) Jianmin Wang and Michael Jordan. IEEE Trans Pattern Anal Mach Intell 41(12):3071–3085

    Article  Google Scholar 

  15. Yosinski J, Clune J, Bengio Y, Lipson H (2014) In Advances in Neural Information Processing Systems 27, ed. Z. Ghahramani, Welling M., Cortes C., Lawrence N. D. and Weinberger K. Q

  16. Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand and victor Lempitsky, In Domain Adaptation in Computer Vision Applications, ed. Gabriela Csurka (Springer International Publishing: Cham, 2017), pp. 189–209

  17. Yao Y (2010) Gianfranco Doretto and Ieee, in 2010 Ieee Conference on Computer Vision and Pattern Recognition, pp 1855-1862

  18. Chattopadhyay R, Sun Q, Fan W, Davidson I, Panchanathan S, Ye J (2012) vol. 6, p. Article 18

  19. Tommasi T, Orabona F, Caputo B, Ieee (2010) In Ieee Conference on Computer Vision and Pattern Recognition,, pp. 3081–3088

  20. Dai W, Yang Q, Xue G-R, Yu Y (2007) Proceedings of the 24th international conference on Machine learning. Association for Computing Machinery, Corvalis, pp 193–200

    Book  Google Scholar 

  21. Gao-Wei Y, Min HE, Jian T, Dong-Sheng H (2018) Control and Decision 33:1795–1800

    Google Scholar 

  22. Wang C, Mahadevan S (2011) Proceedings of the Twenty-Second international joint conference on Artificial Intelligence - Volume Volume Two. AAAI Press, Barcelona, pp 1541–1546

    Google Scholar 

  23. Fang M, Guo Y, Zhang X, Li X (2015) Pattern Recogn Lett 51:101–106

    Article  Google Scholar 

  24. Zhao X, Liang Y, Guo AJX, Zhu F (2020) Remote Sens Lett 11:303–312

    Article  Google Scholar 

  25. Chen C, Qiu M, Yang Y, Zhou J, Huang J, Li X, Bao FS (2019) The World Wide Web Conference. Association for Computing Machinery, San Francisco, pp 2630–2636

    Book  Google Scholar 

  26. Noriaki Hashimoto, Daisuke Fukushima, Ryoichi Koga, Yusuke Takagi, Kaho Ko, Kei Kohno, Masato Nakaguro, Shigeo Nakamura, Hidekata Hontani, Ichiro Takeuchi and Ieee, Multi-scale Domain-adversarial Multiple-instance CNN for Cancer Subtype Classification with Unannotated Histopathological Images. In: 2020 Ieee/Cvf Conference on Computer Vision and Pattern Recognition, (2020), pp 3851–3860

  27. Singh R, Patro PK, Kulkarni AR, Harendranath CS (2014) In Solid State Physics: Proceedings of the 58th Dae Solid State Physics Symposium 2013, Pts a & B, ed. C. Murli, Bhattacharyya D. and Gadkari S. C, pp 655–657

  28. Pan SJ, Yang Q (2010) IEEE Trans Knowl Data Eng 22:1345–1359

    Article  Google Scholar 

  29. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) In Advances in Neural Information Processing Systems 27, ed. Z. Ghahramani, Welling M., Cortes C., Lawrence N. D. and Weinberger K. Q

  30. Gretton A, Sriperumbudur B, Sejdinovic D, Strathmann H, Balakrishnan S, Pontil M, Fukumizu K (2012) Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1. Curran Associates Inc., Lake Tahoe, pp 1205–1213

    Google Scholar 

  31. Guillon O, Langer J (2010) J Mater Sci 45:5191–5195

    Article  Google Scholar 

  32. Langer J, Hoffmann MJ, Guillon O (2009) Acta Materialia 57(18):5454–5465

    Article  Google Scholar 

  33. Langer J, Hoffmann MJ, Guillon O (2011) J Am Ceramic Soc 94:131–138

    Google Scholar 

  34. Langer J, Hoffmann ZJ, Guillon O (2011) J Am Ceramic Soc 94(8):2344–2353

    Article  Google Scholar 

  35. Chen Z, Subhash G, Tulenko JS (2014) J Nuclear Mater 454(1-3):427–433

    Article  Google Scholar 

  36. Nivala PT, James SP (2020) J Mater Sci 55:3668–3683

    Article  Google Scholar 

  37. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai and Soumith Chintala (2019) In Advances in Neural Information Processing Systems 32, ed. H. Wallach, Larochelle H., Beygelzimer A., d'Alche-Buc F., Fox E. and Garnett R

  38. Kingma D, Ba J (2014) Computer Sci

Download references

Acknowledgments

This research is funded by the National Natural Science Foundation of China (11872130); and the Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission (cstc2019jcyj-msxmX0084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Xiaomin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhouzhi, W., Xiaomin, Z., Zhipeng, Z. et al. Multi-source sintering transfer learning in small dataset sintering prediction scenario. Int J Mater Form 14, 1157–1170 (2021). https://doi.org/10.1007/s12289-021-01630-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-021-01630-y

Keywords

Navigation