Skip to main content
Log in

Towards best practice in numerical simulation of blind rivet nut installation

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The present paper derives best practices to accurately simulate the installation process of a Blind Rivet Nut (BRN) using FEA. A BRN is a mechanical fastener used to equip plate material with a threaded part. The installation of a BRN inherently induces a high contact force which can have detrimental consequences when applied to non-metals such as polymer composite materials. The effects of the localized stress in the plate on the mechanical performance of the BRN can be studied with the aid of finite element simulations. To this end, the joining by forming process itself is accurately simulated using a computational efficient axisymmetric 2D model. The 2D model enables to predict the metal flow and internal state of stress after setting with sufficient accuracy. The latter is validated using a full 3D model and a multitude of experimental observations. It is shown that the large strain flow curve of the BRN material needs to be adequately identified. An industrially relevant calibration procedure is presented mitigating the experimental effort. In addition, material test selection in case of highly anisotropic BRN materials is discussed based on a thorough stress state analysis. Finally, the sensitivity of the BRN geometry to a change in the most relevant geometrical parameters is demonstrated. The presented experimental methods and numerical models provide fundamental insights in the forming mechanism including process-induced ductile damage while installing the BRN. The latter will foster the development of new BRN applications in multi-material mechanical design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Dejond (2020) Catalogue blind rivet nuts. https://www.tubtara.com/en/standard-tubtara-blind-rivet-nuts. Accessed 30 October

  2. Borowiecki C, Iluk A, Krysiński P, Rusiński E, Sawicki M (2019) Numerical and experimental investigation of bolted connections with blind rivet nuts. In: Rusiński E, Pietrusiak D (eds) Proceedings of the 14th international scientific conference: computer aided engineering. Springer International Publishing, Cham, pp 88–95

  3. Yoo SY, Kim CH, Kweon JH, Choi JH (2016) The structural analysis and strength evaluation of the rivet nut joint for composite repair. Compos Struct 136:662. https://doi.org/10.1016/j.compstruct.2015.11.012

    Article  Google Scholar 

  4. Klasztorny M, Nycz D (2014) Modelling and numerical study of blind rivet nut / bolt jointsof composite shell segments. In: Pietraszkiewicz W, Gorski J (eds) Shell structures: theory and applications, vol 3. CRC Press

  5. Messler RW (2004) Joining of materials and structures. Butterworth-Heinemann, Burlington. https://doi.org/10.1016/B978-075067757-8/50000-2

    Book  Google Scholar 

  6. Van de Velde A, Coppieters S, Maeyens J, Wevers M, Debruyne D (2020) On the numerical prediction of the torque-to-turn-value of a blind rivet nut. Int J Mater Form 13(1):127. https://doi.org/10.1007/s12289-019-01476-5

    Article  Google Scholar 

  7. Hassanifard S, Adibeig MR, Mohammadpour M, Varvani-farahani A (2019) Fatigue life of axially loaded clamped rivet-nut joints: experiments and analyses. Int J Fatigue 129:105254. https://doi.org/10.1016/j.ijfatigue.2019.105254

    Article  Google Scholar 

  8. Nehls T, Fuchs N, Wanner MC, Schulze M, Wunderlicht C (2017) Vergleich und analyse verscheidener setzverfahren zur herstellung qualittsgerchter blindnietermutterverbindungen. Tech. rep., Europische Forschungsgesellschaft fr Blechverarbeitung e.V Hannover

  9. Sizova I, Sviridov A, Bambach M (2017) Avoiding crack nucleation and propagation during upset bulging of tubes. Int J Mater Form 10(3):443. https://doi.org/10.1007/s12289-016-1292-9

    Article  Google Scholar 

  10. Sviridov A, Rusch M, Almohallami A, Bonk C, Bouguecha A, Bambach M, Behrens BA (2017) Creating load-adapted mechanical joints between tubes and sheets by controlling the material flow under plastically unstable tube upsetting. Procedia Eng 207:968. https://doi.org/10.1016/j.proeng.2017.10.860

    Article  Google Scholar 

  11. Yu H, Li J, He Z (2018) Formability assessment of plastic joining by compression instability for thin-walled tubes. Int J Adv Manuf Technol 97(9):3423. https://doi.org/10.1007/s00170-018-2128-1

    Article  Google Scholar 

  12. De AK, Speer JG, Matlock DK, Murdock DC, Mataya MC, Comstock RJ (2006) Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel. Metall Mater Trans A 37(6):1875. https://doi.org/10.1007/s11661-006-0130-y

    Article  Google Scholar 

  13. Lichtenfeld JA, Van Tyne CJ, Mataya MC (2006) Effect of strain rate on stress-strain behavior of alloy 309 and 304L austenitic stainless steel. Metall Mater Trans A 37(1):147. https://doi.org/10.1007/s11661-006-0160-5

    Article  Google Scholar 

  14. Prasad SV, Jonnalagadda KN (2013) Mechanical behavior of SS 304LN at high strain rates in compression. In: Chalivendra V, Song B, Casem D (eds) Dynamic behavior of materials, vol 1. Springer New York, New York, pp 101–108

  15. LSTC (2019) LS-DYNA keyword users’s manual Volume I, r11 edn.

  16. Wanner MC, Henkel KM, Herzogt P, Fuchs N, Glienke R (2009) Einsatz von blindgenieteten funktionselementen in ausgewhlten bauteilwerkstoffen. Tech. rep., Universitt Rostock Fakultt fr Maschinenbau und Schiffstechnik

  17. Coppieters S, Jäckel M, Miyake N, Kraus C, Traphöner H, Kuwabara T, Tekkaya AE (2019) Forming technology forum

  18. Jäckel M, Coppieters S, Vandermeiren N, Kraus C, Drossel WG, Miyake N, Kuwabara T, Unruh K, Traphöner H, Tekkaya AE, Balan T (2020) Process-oriented flow curve determination at mechanical joining. Procedia Manuf 47:368. https://doi.org/10.1016/j.promfg.2020.04.289. 23rd International Conference on Material Forming

    Article  Google Scholar 

  19. Bai Y, Wierzbicki T (2008) A new model of metal plasticity and fracture with pressure and Lode dependence. Int J Plast 24(6):1071. https://doi.org/10.1016/j.ijplas.2007.09.004. http://www.sciencedirect.com/science/article/pii/S0749641907001246

    Article  Google Scholar 

  20. Reddy TY, Reid S (1979) On obtaining material properties from the ring compression test. Nucl Eng Des 52(2):257. https://doi.org/10.1016/0029-5493(79)90055-4

    Article  Google Scholar 

  21. Hawkyard J, Johnson W (1967) An analysis of the changes in geometry of a short hollow cylinder during axial compression. Int J Mech Sci 9(4):163. https://doi.org/10.1016/0020-7403(67)90027-6

    Article  Google Scholar 

  22. Male AT, DePierre V (1970) The validity of mathematical solutions for determining friction from the ring compression test. J Lubric Tech 92(3):389

    Article  Google Scholar 

  23. Sofuoglu H, Rasty J (1999) On the measurement of friction coefficient utilizing the ring compression test. Tribol Int 32(6):327. https://doi.org/10.1016/S0301-679X(99)00055-9

    Article  Google Scholar 

  24. Mahabunphachai S, Ko M (2010) Investigations on forming of aluminum 5052 and 6061 sheet alloys at warm temperatures. Mater Des (1980-2015) 31(5):2422. https://doi.org/10.1016/j.matdes.2009.11.053

    Article  Google Scholar 

  25. Coppieters S, Kuwabara T (2014) Identification of post-necking hardening phenomena in ductile sheet metal. Exp Mech 54:1355. https://doi.org/10.1007/s11340-014-9900-4

    Article  Google Scholar 

  26. Cullen GW, Korkolis YP (2013) Ductility of 304 stainless steel under pulsed uniaxial loading. Int J Solids Struct 50(10):1621. https://doi.org/10.1016/j.ijsolstr.2013.01.020

    Article  Google Scholar 

  27. Felder E, Levrau C, Mantel M, Dinh NGT (2012) Identification of the work of plastic deformation and the friction shear stress in wire drawing. Wear 27:286–287. https://doi.org/10.1016/j.wear.2011.05.029

    Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Van de Velde.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van de Velde, A., Debruyne, D., Maeyens, J. et al. Towards best practice in numerical simulation of blind rivet nut installation. Int J Mater Form 14, 1139–1155 (2021). https://doi.org/10.1007/s12289-021-01629-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-021-01629-5

Keywords

Navigation