Skip to main content

Spurious-free interpolations for non-intrusive PGD-based parametric solutions: Application to composites forming processes

Abstract

Non-intrusive approaches for the construction of computational vademecums face different challenges, especially when a parameter variation affects the physics of the problem considerably. In these situations, classical interpolation becomes inaccurate. Therefore, classical approaches for the construction of an offline computational vademecum, typically by using model reduction techniques, are no longer valid. Such problems are faced in different physical simulations, for example welding path problems, resin transfer molding, or sheet compression molding, among others. In such situations, the interpolation of precomputed solutions at prescribed parameter values (built using either intrusive or non intrusive techniques) generates spurious numerical artifacts. In this work, we propose an alternative interpolation and simulation strategy by using physically-based morphing of spaces. The morphing will transform the uncompatibe physical domains of the problem’s solution into a compatible one, where an interpolation free of artifacts can be performed. Later on, an inverse transformation can be used to push-back the solution. Different relevant examples are illustrated in this work to motivate the use of the proposed method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

References

  1. Aguado JV, Borzacchiello D, Ghnatios C, Lebel F, Upadhyay R, Binetruy C, Chinesta F (2017) A simulation app based on reduced order modeling for manufacturing optimization of composite outlet guide vanes. Adv Model Simul Eng Sci 4(1): 1–26

    Article  Google Scholar 

  2. Aguado JV, Borzacchiello D, Lopez E, Abisset-Chavanne E, Gonzalez D, Cueto E, Modeling F. Chinesta. (2017) From Microstructure Investigations to Multiscale Bridging the Gap, chapter New trends in computational mechanics : model order reduction, manifold learning and data-driven. Wiley, pp 1–20

  3. Bordeu F, Ghnatios C, Boulze D, Carles B, Sireude D, Leygue A, Chinesta F (2015) Parametric 3d elastic solutions of beams involved in frame structures. Adv Aircraft Spacecraft Sci 2(3):233–248

    Article  Google Scholar 

  4. Borzacchiello D, Aguado JV, Chinesta F (2019) Non-intrusive sparse subspace learning for parametrized problems. Arch Comput Methods Eng 26:303–326

    MathSciNet  Article  Google Scholar 

  5. Chinesta F, Cueto E, Abisset E, Duval JL, El Khaldi F (2020) Virtual, digital and hybrid twins. a new paradigm in data-based engineering and engineered data. Arch Comput Methods Eng 27:105–134

    MathSciNet  Article  Google Scholar 

  6. Chinesta F, Keunings R, Leygue A (2014) The proper generalized decomposition for advanced numerical simulations. Springer, Berlin

  7. Cueto E, Ghnatios C, Chinesta F, Monte N, Sanchez F, Falco A (2014) Improving computational efficiency in lcm by using computational geometry and model reduction techniques. Key Eng Mater 611:339–343

    Article  Google Scholar 

  8. Dohi T, Osaki S (1993) A note on portfolio optimization with path-dependent utility. Ann Oper Research 45(1):77–90

    MathSciNet  Article  Google Scholar 

  9. Sol H, Morren G, Bossuyt S (2008) 2d permeability tensor identification of fibrous reinforcements for rtm using an inverse method. Compos Part A 39:1530–1536

    Article  Google Scholar 

  10. Ghnatios C, Montes N, Tertrais H, Duval J-L, Abisset-Chavanne E, Falco A, process F. Chinesta. (2019) Towards parametric rtm the interpolative mapping. AIP Conf Proc 100004:2113

    Google Scholar 

  11. Ghnatios C, Mathis CH, Simic R, Spencer ND, Chinesta F (2017) Modeling soft permeable matter with the proper generalized decomposition (pgd) approach, and verification by means of nanoindentation. Soft Matter 13:4482–4493

    Article  Google Scholar 

  12. Giraldi L, Litvinenko A, Liu D, Matthies HG, Nouy A (2014) To be or not to be intrusive? the solution of parametric and stochastic equations — the “plain vanilla” galerkin case. SIAM J Sci Comput 36(6):A2720–A2744

    MathSciNet  Article  Google Scholar 

  13. Gonzalez D, Alfaro I, Quesada C, Cueto E, Chinesta F (2015) Computational Biomechanics for Medicine, chapter Vademecums for Real-Time Computational Surgery. Springer, pp 3–12

  14. Huang Y, Zhao L, Woensel TV, Gross J-L (2017) Time-dependent vehicle routing problem with path flexibility. Transp Res Part B: Methodol 95:169–195

    Article  Google Scholar 

  15. Ibanez R, Abisset-Chavanne E, Ammar A, Gonzalez D, Cueto E, Huerta A, Duval JL, Chinesta F (2018) A multi-dimensional data-driven sparse identification technique: the sparse proper generalized decomposition. Complexity 2018(5608286):11

    MATH  Google Scholar 

  16. Leon A, Mueller S, de Luca P, Said R, Duval JL, Chinesta F (2019) Non-intrusive proper generalized decomposition involving space and parameters: application to the mechanical modeling of 3d woven fabrics. Adv Model Simul Eng Sci 6(13):1–20

    Google Scholar 

  17. Lopez E, Gonzalez D, Aguado JV, Abisset-Chavanne E, Cueto E, Binetruy C, Chinesta F (2018) A manifold learning approach for integrated computational materials engineering. Arch Comput Method Engineering 5(1):59–68

    MathSciNet  Article  Google Scholar 

  18. Lu Y, Blal N, Gravouil A (2019) Datadriven hopgd based computational vademecum for welding parameter identification. Computational mechanics:1

  19. Ojo OO, Taban E, Kaluc E (2018) Loop travel-path of fibre laser welded alclad aa2219-o alloy. J Mater Process Technol 251:118–126

    Article  Google Scholar 

  20. Quaranta G, Ziane M, Haug E, Duval JL, Chinesta F (2019) A minimally-intrusive fully 3d separated plate formulation in computational structural mechanics. Adv Model Simul Eng Science 6(11):1–22

    Article  Google Scholar 

  21. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326

    Article  Google Scholar 

  22. Tsay JJ, Arora JS (1990) Nonlinear structural design sensitivity analysis for path dependent problems. part 1 General theory. Comput Methods Appl Mech Eng 81(2):183–208

    Article  Google Scholar 

  23. Tsiolakis V, Giacomini M, Sevilla R, Othmer C, Huerta A (2019) Nonintrusive proper generalised decomposition for parametrised incompressible flow problems in openfoam. Open source arXiv:1906.05403, pp 1–35

  24. Wang X, Yan Y, Gu X (2019) Spot welding robot path planning using intelligent algorithm. J Manuf Process 42:1–10

    Article  Google Scholar 

  25. Zhu Z, Ghong J, Huang Y, Zhan Y, Gong M, Zhang L (2019) Experimental research on transition from scale 3d printing to full-size printing in construction. Construct Build Mater 208:350–360

    Article  Google Scholar 

  26. Zou W, Conti M, Diez P, Auricchio F (2017) A nonintrusive proper generalized decomposition scheme with application in biomechanics. Int J Numer Methods Engineering 113:230–251

    MathSciNet  Article  Google Scholar 

  27. Zou X, Conti M, Diez P, Auricchio F (2017) Pgd for constrained parametric space with a non-intrusive implementation. In: International conference on adaptive modeling and simulation Admos 2017, Verbania, Italy. ECCOMAS

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chady Ghnatios.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghnatios, C., Cueto, E., Falco, A. et al. Spurious-free interpolations for non-intrusive PGD-based parametric solutions: Application to composites forming processes. Int J Mater Form 14, 83–95 (2021). https://doi.org/10.1007/s12289-020-01561-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-020-01561-0

Keywords

  • Non-intrusive PGD
  • Smart interpolation
  • Geometrical mapping
  • Interpolation
  • Real-time
  • Computational vademecum