Skip to main content
Log in

A forming time estimator of superplastic free bulge tests based on dimensional analysis

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Dimensional analysis is performed as a method to evaluate the characteristics of superplastic forming processes. The analysis is focused on the forming time results from superplastic free bulge tests so that an estimator for the forming time is obtained based on dimensionless parameters. The dimensional analysis is performed by applying the normalisation to the dynamic equations and their corresponding boundary conditions, from which five dimensionless parameters are obtained. Particular conditions of the tests allow to reduce the parameters to two. This preliminary study of the applicability of the dimensional analysis on superplastic forming processes will guide for further steps in which this technique may help during the initial stages of the process layout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alabort E, Putman D, Reed RC (2015) Acta Mater 95:428. https://doi.org/10.1016/j.actamat.2015.04.056

    Article  Google Scholar 

  2. Ghosh AK, Hamilton CH (1986) Def Sci J 36(2):153. https://doi.org/10.1016/B978-1-84569-753-2.50010-8

    Article  Google Scholar 

  3. Hefti L (2007) J Mater Eng Perform 16(2):136. https://doi.org/10.1007/s11665-007-9023-5

    Article  Google Scholar 

  4. Boyer R (1996) Mater Sci Eng A 213(1-2):103. https://doi.org/10.1016/0921-5093(96)10233-1

    Article  Google Scholar 

  5. Barnes AJ (2007) J Mater Eng Perform 16(4):440. https://doi.org/10.1007/s11665-007-9076-5. http://link.springer.com/10.1007/s11665-007-9076-5

    Article  Google Scholar 

  6. Hefti L (2004) J Mater Eng Perform 13:678. https://doi.org/10.1361/10599490421286

    Article  Google Scholar 

  7. Jovane F (1968) Int J Mech Sci 10:403

    Article  Google Scholar 

  8. Majidi O, Jahazi M, Bombardier N (2018;2019) Int. J. Material Forming 12(4):693

  9. ASTM (2011) E2448-11: standard test method for determining the superplastic properties of metallic sheet materials (ASTM)

  10. ASTM (2015) E2712-15: standard test methods for bulge-forming superplastic metallic sheet (ASTM)

  11. Padmanabhan KA, Vasin RA, Enikeev FU (2001) Superplastic flow: phenomenology and mechanics. Springer, Berlin

    Book  Google Scholar 

  12. Sorgente D, Palumbo G, Scintilla LD, Tricarico L (2016) Int J Adv Manuf Technol 83(5–8):861. https://doi.org/10.1007/s00170-015-7614-0

    Article  Google Scholar 

  13. Aksenov SA, Chumachenko EN, Kolesnikov AV, Osipov SA (2015) J Mater Process Technol 217:158. https://doi.org/10.1016/j.jmatprotec.2014.11.015

    Article  Google Scholar 

  14. Albakri M, Abu-Farha F, Khraisheh M (2013) Int J Mech Sci 66:55. https://doi.org/10.1016/j.ijmecsci.2012.10.008

    Article  Google Scholar 

  15. Yoo JT, Yoon JH, Lee HS, Youn SK (2012) J Mech Sci Technol 26 (7):2101. https://doi.org/10.1007/s12206-012-0523-3

    Article  Google Scholar 

  16. Yoon JH, Yi YM, Lee HS (2012) Mater Werkst 43(9):805. https://doi.org/10.1002/mawe.201200046

    Article  Google Scholar 

  17. Sorgente D, Tricarico L (2014) Int J Mater Form 7(2):179. https://doi.org/10.1007/s12289-012-1118-3

    Article  Google Scholar 

  18. Jeyasingh JJV, Kothandaraman G, Sinha PP, Rao BN, Reddy AC (2008) Mater Sci Eng A 478 (1-2):397. https://doi.org/10.1016/j.msea.2007.05.050

    Article  Google Scholar 

  19. Franchitti S, Giuliano G, Palumbo G, Sorgente D, Tricarico L (2008) Int J Mater Form 1:1067. https://doi.org/10.1007/s12289-008-0

    Article  Google Scholar 

  20. Antoniswamy A, Taleff E, Hector L, Carter JT (2015) Mater Sci Eng A 631:1. https://doi.org/10.1016/j.msea.2015.02.018

    Article  Google Scholar 

  21. Carpenter A, Antoniswamy A, Carter JT, Hector L, Taleff E (2014) Acta Mater 68:254. https://doi.org/10.1016/j.actamat.2014.01.043

    Article  Google Scholar 

  22. Jarrar FS, Abu-Farha F, Hector L, Khraisheh MK (2009) J Mater Eng Perform 18(7):863. https://doi.org/10.1007/s11665-008-9322-5

    Article  Google Scholar 

  23. Pradeep S, Pancholi V (2014) Metallur Mater Trans A: Phys Metallur Mater Sci 45(13):6207. https://doi.org/10.1007/s11661-014-2573-x

    Article  Google Scholar 

  24. Barenblatt GI (1996) Scaling, self-similarity, and intermediate asymptotics: dimensional analysis and intermediate asymptotics. Cambridge texts in applied mathematics. Cambridge University Press. https://doi.org/10.1017/CBO9781107050242

  25. Aksenov SA, Sorgente D (2017) Procedia Eng 207:1892

    Article  Google Scholar 

  26. Majidi O, Jahazi M, Bombardier N (2019) Int J Adv Manuf Technol 102(5):2357

    Article  Google Scholar 

  27. Buckingham E (1914) Phys Rev (Series) I:4. https://doi.org/10.1103/physrev.4.345

    Article  Google Scholar 

  28. Belk JA (1975) Int J Mech Sci 17(8):505. https://doi.org/10.1016/0020-7403(75)90015-6

    Article  Google Scholar 

  29. Guo ZX, Ridley N (1989) Mater Sci Eng A 114(C):97. https://doi.org/10.1016/0921-5093(89)90849-6

    Article  Google Scholar 

  30. Enikeev FU, Kruglov AA (1995) Int J Mech Sci 37(5):473

    Article  Google Scholar 

  31. Giuliano G, Franchitti S (2007) Int J Mach Tools Manuf 47(3-4):471. https://doi.org/10.1016/j.ijmachtools.2006.06.009

    Article  Google Scholar 

  32. Ingelbrecht C (1985) Superplastic deformation of titanium. University of Surrey, Ph.D. thesis

    Google Scholar 

  33. Taleff E, Hector LG Jr, Verma R, Krajewski PE, Chang JK (2010) J Mater Eng Perform 19 (4):488

    Article  Google Scholar 

  34. Yu-quan S, Jun Z (1986) Mater Sci Eng 84:111

    Article  Google Scholar 

  35. Ramos RE, Prada JCG, Giuliano G (2011) Análisis de las características mecánicas de la superplasticidad: aplicación a la aleación de PbSn60 (in Spanish). Ph.D. thesis

  36. Sorgente D, Palumbo G, Piccininni A, Guglielmi P, Tricarico L (2017) Int J Adv Manuf Technol, 90(1-4). https://doi.org/10.1007/s00170-016-9235-7

  37. Fornasini P (2009;2008) The uncertainty in physical measurements: an introduction to data analysis in the physics laboratory, 1st edn. Springer, New York

Download references

Acknowledgements

The authors wish to thank Prof. Luigi Tricarico, Prof. Donato Sorgente and the Dipartimento di Meccanica, Matematica e Management (DMMM) of the University of Bari (Italy) for allowing to perform the tests in its facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. García-Barrachina.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Barrachina, L., Gámez, A.J. A forming time estimator of superplastic free bulge tests based on dimensional analysis. Int J Mater Form 14, 499–506 (2021). https://doi.org/10.1007/s12289-019-01527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-019-01527-x

Keywords

Navigation