Skip to main content

Picture-frame testing of woven prepreg fabric: An investigation of sample geometry and shear angle acquisition


This paper examines different concepts in relation to the picture-frame test for shear characterization of a woven prepreg fabric. The influence of the sample arms is investigated by means of cut slits as well as removed transverse tows. Shear angles are obtained using Digital Image Correlation (DIC) and also from images taken during the test which are processed for fiber angles directly from the weave texture. The image processing relies on the Hough transform in MATLAB. The concept of constant shear strain rate is discussed and implemented in the test software by a multi-linear crosshead velocity profile. Finally, bias-extension data are obtained and used for comparison. It is found that the sample arm modifications have a pronounced effect on the measured shear load whereas the uniformness of the shear strain field in the samples is not improved considerably.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17


  1. Alsayednoor J, Harrison P, Yu W R (2017) Influence of specimen pre-shear and wrinkling on the accuracy of uniaxial bias extension test results. Compos A: Appl Sci Manuf 101:81–97.

    Article  Google Scholar 

  2. Arumugam V, Mishra R, Militky J, Tunak M (2016) In-plane shear behavior of 3D spacer knitted fabrics. J Ind Text 46(3):868–886.

    Article  Google Scholar 

  3. Cao J, Akkerman R, Boisse P, Chen J, Cheng H S, de Graaf E F, Gorczyca J L, Harrison P, Hivet G, Launay J, Lee W, Liu L, Lomov S V, Long A, de Luycker E, Morestin F, Padvoiskis J, Peng X, Sherwood J A, Stoilova T, Tao X, Verpoest I, Willems A, Wiggers J, Yu T, Zhu B (2008) Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results. Compos A: Appl Sci Manuf 39(6):1037–1053.

    Article  Google Scholar 

  4. Dangora L M, Hansen C J, Mitchell C J, Sherwood J A, Parker J C (2015) Challenges associated with shear characterization of a cross-ply thermoplastic lamina using picture frame tests. Compos A: Appl Sci Manuf 78:181–190.

    Article  Google Scholar 

  5. Dassault Systèmes Simulia Corporation (2014) Abaqus 6.14 Documentation: 23.4.1 Fabric material behavior

  6. Ferretti M, Madeo A, Dell’Isola F, Boisse P (2014) Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Zeitschrift fur Angewandte Mathematik und Physik 65 (3):587–612.

    Article  MathSciNet  Google Scholar 

  7. Harrison P, Clifford M, Long A (2002) Constitutive modelling of impregnated continuous fibre reinforced composites micromechanical approach. Plast Rubber Compos 31(2):1–12.

    Article  Google Scholar 

  8. Harrison P, Clifford M, Long A (2004) Shear characterisation of viscous woven textile composites: A comparison between picture frame and bias extension experiments. Compos Sci Technol 64(10-11):1453–1465.

    Article  Google Scholar 

  9. Harrison P, Wiggers J, Long A (2008) Normalization of shear test data for rate-independent compressible fabrics. J Compos Mater 42(22):2315–2344.

    Article  Google Scholar 

  10. Harrison P, Alvarez M F, Anderson D (2018) Towards comprehensive characterisation and modelling of the forming and wrinkling mechanics of engineering fabrics. Int J Solids Struct 154:2–18.

    Article  Google Scholar 

  11. Jauffrės D, Sherwood J A, Morris C D, Chen J (2010) Discrete mesoscopic modeling for the simulation of woven-fabric reinforcement forming. Int J Mater Form 3(SUPPL. 2):1205–1216.

    Article  Google Scholar 

  12. Krieger H, Kaufmann D, Gries T (2015) Kinematic drape algorithm and experimental approach for the design of tailored non-crimp fabrics. Key Eng Mater 651-653:393–398.

    Article  Google Scholar 

  13. Krogh C, Glud J A, Jakobsen J (2019) Modeling the robotic manipulation of woven carbon fiber prepreg plies onto double curved molds: A path-dependent problem. J Compos Mater 53(15):2149–2164.

    Article  Google Scholar 

  14. Launay J, Hivet G, Duong A V, Boisse P (2008) Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements. Compos Sci Technol 68(2):506–515.

    Article  Google Scholar 

  15. Lebrun G, Bureau M N, Denault J (2003) Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics. Compos Struct 61(4):341–352.

    Article  Google Scholar 

  16. Lomov S V, Boisse P, Deluycker E, Morestin F, Vanclooster K, Vandepitte D, Verpoest I, Willems A (2008) Full-field strain measurements in textile deformability studies. Compos A: Appl Sci Manuf 39 (8):1232–1244.

    Article  Google Scholar 

  17. Lussier D (2000) Shear characterization of textile composite formability Master’s thesis. University of Massachusetts, Lowell

    Google Scholar 

  18. Marques O (2011) Practical image and video processing using MATLAB. Wiley, New York.

    Book  Google Scholar 

  19. Milani A S, Nemes J A, Lebrun G, Bureau M N (2010) A comparative analysis of a modified picture frame test for characterization of woven fabrics. Polym Compos 31(4):561–568.

    Google Scholar 

  20. Mohan R P, Alshahrani H, Hojjati M (2016) Investigation of intra-ply shear behavior of out-of-autoclave carbon/epoxy prepreg. J Compos Mater 50(30):4251–4268.

    Article  Google Scholar 

  21. Nguyen M, Herszberg I, Paton R (1999) The shear properties of woven carbon fabric. Compos Struct 47(1-4):767–779.

    Article  Google Scholar 

  22. Nosrat-Nezami F, Gereke T, Eberdt C, Cherif C (2014) Characterisation of the shear-tension coupling of carbon-fibre fabric under controlled membrane tensions for precise simulative predictions of industrial preforming processes. Compos A: Appl Sci Manuf 67:131–139.

    Article  Google Scholar 

  23. Olson B G, Krieger H, Sherwood J A, Willis D J, Bergeron K (2017) Investigation of tensile properties of braided parachute suspension line. In: 24th AIAA aerodynamic decelerator systems technology conference american institute of aeronautics and astronautics, Denver, Colorado.

  24. Peng X, Cao J (2005) A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics. Compos A: Appl Sci Manuf 36(6):859–874.

    Article  Google Scholar 

  25. Peng X, Cao J, Chen J, Xue P, Lussier D S, Liu L (2004) Experimental and numerical analysis on normalization of picture frame tests for composite materials. Compos Sci Technol 64(1):11–21.

    Article  Google Scholar 

  26. Zhu B, Yu T X, Tao X M (2007) An experimental study of in-plane large shear deformation of woven fabric composite. Compos Sci Technol 67(2):252–261.

    Article  Google Scholar 

Download references


The authors wish to thank the Innovation Fund Denmark (grant no. 5163-00003B) for providing support for the research presented in the paper. The authors also thank Terma Aerostructures A/S for providing the material.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Christian Krogh.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krogh, C., White, K.D., Sabato, A. et al. Picture-frame testing of woven prepreg fabric: An investigation of sample geometry and shear angle acquisition. Int J Mater Form 13, 341–353 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Woven carbon fiber prepreg
  • Shear characterization
  • Picture frame testing
  • Image analysis