Design of a genetic algorithm to preform optimization for hot forging processes

  • Daniel KampenEmail author
  • Johannes Richter
  • Thoms Blohm
  • Johannes Knust
  • Jan Langner
  • Malte Stonis
  • Bernd-Arno Behrens
Original Research


To this day, the design of preforms for hot forging processes is still a manual trial and error process and therefore time consuming. Furthermore, its quality vastly depends on the engineer’s experience. At the same time, the preform is the most influencing stage for the final forging result. To overcome the dependency on the engineer’s experience and time-consuming optimization processes this paper presents and evaluates a preform optimization by an algorithm for cross wedge rolled preforms. This algorithm takes the mass distribution of the final part, the preform volume, the shape complexity, the appearance of folds in the final part and the occurring amount of flash into account. This forms a multi-criteria optimization problem resulting in large search spaces. Therefore, an evolutionary algorithm is introduced. The developed algorithm is tested with the help of a connecting rod to estimate the influence of the algorithm parameters. It is found that the developed algorithm is capable of creating a suitable preform for the given criteria in less than a minute. Furthermore, two of the five given algorithm parameters, the selection pressure und the population size, have significant influence on the optimization duration and quality.


Preform Optimization Genetic algorithm Cross wedge rolled Adaptive flash 



The authors thank the German Research Foundation (Deutsche Forschungsgemeinschaft) for the funding of the research project “Entwurf optimaler Vorformstufen zum Herstellen von Schmiedebauteilen unter Anwendung von stochastischen Optimierungsverfahren” (DFG BE 1691/177-1 and DFG OV 36/22-1). The authors thank the Hammerwerk Fridingen GmbH for the support in this project. The authors declare that they have no conflict of interest.


  1. 1.
    Behrens B-A, Nickel R, Müller S (2009) Flashless precision forging of a two-cylinder crankshaft. Prod Eng 3(4-5):381–389. CrossRefGoogle Scholar
  2. 2.
    Kache H, Stonis M, Behrens B-A (2012) Development of a warm cross wedge rolling process using FEA and downsized experimental trials. Prod Eng Res Devel 6(4-5):339–348. CrossRefGoogle Scholar
  3. 3.
    Hatzenbichler T, Buchmayr B (2008) Vorformoptimierung für das Gesenkschmieden mittels numerischer Simulation. BHM Berg- und Hüttenmännische Monatshefte 153(11):413–417. CrossRefGoogle Scholar
  4. 4.
    Shao Y, Lu B, Ou H, Ren F, Chen J (2014) Evolutionary forging preform design optimization using strain-based criterion. Int J Adv Manuf Technol 71(1-4):69–80. CrossRefGoogle Scholar
  5. 5.
    Mirsaeidi M. et al. (2009) Optimum forging preform shape design by interpolation of boundary nodes. Proceedings of the world congress on Engineering Vol 2Google Scholar
  6. 6.
    Behrens B-A, Nickel R, Stonis M (2012) Simulation algorithm for the assessment and modification of multi-directional forging processes and tool gemoetries. Prod. Eng. Res. Devel. 6(2):187–198. CrossRefGoogle Scholar
  7. 7.
    Landkammer P, Schneider T, Schulte R, Steinmann P, Merklein M (2016) A non-invasive form finding method with application to metal forming. Prod. Eng. Res. Devel. 10(1):93–102. CrossRefGoogle Scholar
  8. 8.
    Behrens B-A, Stonis M, Rasche N (2018) Influence of the forming angle in cross wedge rolling on the multi-directional forging of crankshafts. Int J Mater Form 11(1):31–41. CrossRefGoogle Scholar
  9. 9.
    Al-Zuheri A, Luong L, Xing K (2016) Developing a multi-objective genetic optimisation approach for an operational design of a manual mixed-model assembly line with walking workers. J Intell Manuf 27(5):1049. CrossRefGoogle Scholar
  10. 10.
    Zhou G, Ma ZD, Cheng A, Li G, Huang J (2015) Design optimization of a runflat structure based on multi-objective genetic algorithm. Struct Multidisc Optim 51(6):1363. CrossRefGoogle Scholar
  11. 11.
    Fu Y, Yang R, Yeh I (2004) A genetic algorithm for optimal design of an inflatable knee bolster. Struct Multidisc Optim 26(3-4):264. CrossRefGoogle Scholar
  12. 12.
    Richter J, Blohm T, Langner J, Stonis M, Behrens B-A (2017) Quality optimization for aluminum precision forging processes in completely enclosed dies of long forging parts by prediction and avoidance of thin flash generation. Procedia Engineering 207:484–489. CrossRefGoogle Scholar
  13. 13.
    Richter J, Stonis M, Langner J, Blohm T, Behrens BA (2018) Development of a predictive simulation method for thin flash generation in flashless precision forging processes of aluminum parts using FEA and experiments. Prod Eng Res Devel 12(3-4):1–11. CrossRefGoogle Scholar
  14. 14.
    Goldberg D (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, LondonzbMATHGoogle Scholar
  15. 15.
    Haupt RL, Haupt SE (2004) Practical genetic algorithms. Wiley, HobokenzbMATHGoogle Scholar
  16. 16.
    Behrens B-A et al (2007) Untersuchungen zur numerischen Ermittlung von Schmiedefalten. In: UTF Science, Jg., H. 2, S. In: 1–6Google Scholar
  17. 17.
    Knust J, Stonis M, Behrens B-A (2016) Preform optimization for hot forging processes using an adaptive amount of flash based on the cross section shape complexity. Prod. Eng. Res. Devel. 10(6):587. CrossRefGoogle Scholar
  18. 18.
    Knust J, Podszus F, Stonis M, Behrens BA, Overmeyer L, Ullmann G (2017) Preform optimization for hot forging processes using genetic algorithms. Int J Adv Manuf Technol 89(5-8):1623. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  • Daniel Kampen
    • 1
    Email author
  • Johannes Richter
    • 1
  • Thoms Blohm
    • 1
  • Johannes Knust
    • 1
  • Jan Langner
    • 1
  • Malte Stonis
    • 1
  • Bernd-Arno Behrens
    • 1
  1. 1.Institut für Integrierte Produktion Hannover gemeinnützige GmbHHannoverGermany

Personalised recommendations