Skip to main content
Log in

An extension of Rice localization criterion to predict the onset of shear localization in semi-solid materials

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Semi-solid materials undergo strain localization and shear band formation as a result of the irregular (local) rearrangement of globular particles. Concerning the formation of a solid network, a granular constitutive relation was developed to incorporate the deformation of solid bonds, as well as solid grains, volumetric strain and the internal friction between solid grains. Considering the fact that the occurrence of instability in viscoplastic materials can be determined by applying the rate-independent stability criterion, as developed in Pan’s analysis of strain localization in rate-sensitive materials, a proper criterion for the assessment of localization phenomenon during the mushy state deformation was proposed. Calculating the critical hardening modulus reveals that the localization in semi-solid materials is induced by flow softening. The flow localization predicted by the presented model was fairly well correlated with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tzimas E, Zavaliangos A (1999) Mechanical behavior of alloys with equiaxed microstructure in the semisolid state at high solid content. Acta Mater 47(2):517–528. https://doi.org/10.1016/S1359-6454(98)00356-5

    Article  Google Scholar 

  2. Tzimas E, Zavaliangos A (2000) Evolution of near-equiaxed microstructure in the semisolid state. Mater Sci Eng A 289(1-2):228–240. https://doi.org/10.1016/S0921-5093(00)00908-4

    Article  Google Scholar 

  3. Atkinson H V (2005) Modelling the semisolid processing of metallic alloys. Prog Mater Sci 50:341–412. https://doi.org/10.1016/j.pmatsci.2004.04.003

  4. Atkinson HV, Burke K, Vaneetveld G (2008) Recrystallisation in the semi-solid state in 7075 Aluminium alloy. Int J Mater Form 1(S1):973–976. https://doi.org/10.1007/s12289-008-0220-z

    Article  Google Scholar 

  5. Omar MZ, Atkinson HV, Kapranos P (2011) Thixotropy in semisolid steel slurries under rapid compression. Metall Mater Trans A 42(9):2807–2819. https://doi.org/10.1007/s11661-011-0671-6

    Article  Google Scholar 

  6. Bolouri A, Shahmiri M, Kang CG (2011) Study on the effects of the compression ratio and mushy zone heating on the thixotropic microstructure of AA 7075 aluminum alloy via SIMA process. J Alloys Compd 509(2):402–408. https://doi.org/10.1016/j.jallcom.2010.09.042

    Article  Google Scholar 

  7. Chen G, Du Z, Cheng Y (2012) Effect of mechanical conditions on the microstructures and mechanical properties of thixoformed Al–cu–Si–mg alloy. Mater Des 35:774–781. https://doi.org/10.1016/j.matdes.2011.10.046

    Article  Google Scholar 

  8. Bouzakis K-D, Maliaris G, Tsouknidas A (2012) FEM supported semi-solid high pressure die casting process optimization based on rheological properties by isothermal compression tests at thixo temperatures extracted. Comput Mater Sci 59:133–139. https://doi.org/10.1016/j.commatsci.2012.03.009

    Article  Google Scholar 

  9. Chen Y, Zhang L, Liu W, Wu G, Ding W (2016) Preparation of mg–Nd–Zn–(Zr) alloys semisolid slurry by electromagnetic stirring. Mater Des 95:398–409. https://doi.org/10.1016/j.matdes.2016.01.131

    Article  Google Scholar 

  10. Wu M, Liu Y, Wang T, Yu K (2016) Deformation behavior and characteristics of sintered porous 2024 aluminum alloy compressed in a semisolid state. Mater Sci Eng A 674:144–150. https://doi.org/10.1016/j.msea.2016.07.120

    Article  Google Scholar 

  11. Jiang J, Wang Y, Xiao G, Nie X (2016) Comparison of microstructural evolution of 7075 aluminum alloy fabricated by SIMA and RAP. J Mater Process Technol 238:361–372. https://doi.org/10.1016/j.jmatprotec.2016.06.020

    Article  Google Scholar 

  12. Liu TY, Atkinson HV, Kapranos P, Kirkwood DH, Hogg SC (2003) Rapid compression of aluminum alloys and its relationship to thixoformability. Metall Mater Trans A 34(7):1545–1554. https://doi.org/10.1007/s11661-003-0266-y

    Article  Google Scholar 

  13. Koeune R, Ponthot J-P (2008) A one-phase thermomechanical constitutive model for the numerical simulation of semi-solid thixoforming. Int J Mater Form 1(S1):1007–1010. https://doi.org/10.1007/s12289-008-0228-4

    Article  Google Scholar 

  14. Favier V, Atkinson HV (2011) Micromechanical modelling of the elastic–viscoplastic response of metallic alloys under rapid compression in the semi-solid state. Acta Mater 59(3):1271–1280. https://doi.org/10.1016/j.actamat.2010.10.059

    Article  Google Scholar 

  15. Koeune R, Ponthot JP (2014) A one phase thermomechanical model for the numerical simulation of semi-solid material behavior. Application to thixoforming. Int J Plast 58:120–153. https://doi.org/10.1016/j.ijplas.2014.01.004

    Article  Google Scholar 

  16. Yuan L, O’Sullivan C, Gourlay CM (2012) Exploring dendrite coherency with the discrete element method. Acta Mater 60(3):1334–1345. https://doi.org/10.1016/j.actamat.2011.11.042

    Article  Google Scholar 

  17. Gourlay CM, Dahle AK (2007) Dilatant shear bands in solidifying metals. Nature 445(7123):70–73

    Article  Google Scholar 

  18. Fonseca J, O’Sullivan C, Nagira T, Yasuda H, Gourlay CM (2013) In situ study of granular micromechanics in semi-solid carbon steels. Acta Mater 61(11):4169–4179. https://doi.org/10.1016/j.actamat.2013.03.043

    Article  Google Scholar 

  19. Kareh KM, Lee PD, Atwood RC et al (2014) Revealing the micromechanisms behind semi-solid metal deformation with time-resolved X-ray tomography. Nat Commun 5:1–7

    Article  Google Scholar 

  20. Gourlay CM, Dahle AK, Nagira T, Nakatsuka N, Nogita K, Uesugi K, Yasuda H (2011) Granular deformation mechanisms in semi-solid alloys. Acta Mater 59(12):4933–4943. https://doi.org/10.1016/j.actamat.2011.04.038

    Article  Google Scholar 

  21. Meylan B, Terzi S, Gourlay CM, Suéry M, Dahle AK (2010) Development of shear bands during deformation of partially solid alloys. Scr Mater 63(12):1185–1188. https://doi.org/10.1016/j.scriptamat.2010.08.032

    Article  Google Scholar 

  22. Kareh KM, O’Sullivan C, Nagira T et al (2017) Dilatancy in semi-solid steels at high solid fraction. Acta Mater 125:187–195. https://doi.org/10.1016/j.actamat.2016.11.066

    Article  Google Scholar 

  23. Cai B, Karagadde S, Yuan L, Marrow TJ, Connolley T, Lee PD (2014) In situ synchrotron tomographic quantification of granular and intragranular deformation during semi-solid compression of an equiaxed dendritic Al–cu alloy. Acta Mater 76:371–380. https://doi.org/10.1016/j.actamat.2014.05.035

    Article  Google Scholar 

  24. Cai B, Lee PD, Karagadde S, Marrow TJ, Connolley T (2016) Time-resolved synchrotron tomographic quantification of deformation during indentation of an equiaxed semi-solid granular alloy. Acta Mater 105:338–346. https://doi.org/10.1016/j.actamat.2015.11.028

    Article  Google Scholar 

  25. Seo P, Youn S, Kang C (2002) The effect of test specimen size and strain-rate on liquid segregation in deformation behavior of mushy state material. J Mater Process Technol 130:551–557. https://doi.org/10.1016/S0924-0136(02)00762-8

    Article  Google Scholar 

  26. Shi L, Yan J, Peng B, Han Y (2011) Deformation behavior of semi-solid Zn–Al alloy filler metal during compression. Mater Sci Eng A 528(22-23):7084–7092. https://doi.org/10.1016/j.msea.2011.05.059

    Article  Google Scholar 

  27. Sheikh-Ansari MH, Aghaie-Khafri M (2017) Assessment of Poliak-Jonas criterion for the onset of dynamic recrystallization in semi-solid deformation. Mater Res Express 4(10):106516

  28. Zavaliangos A (1998) Modeling of the mechanical behavior of semisolid metallic alloys at high volume fractions of solid. Int J Mech Sci 40(10):1029–1041. https://doi.org/10.1016/S0020-7403(98)00011-3

    Article  MATH  Google Scholar 

  29. Kang CG, Jung HK (1999) Finite element analysis with deformation behavior modeling of globular microstructure in forming process of semi-solid materials. Int J Mech Sci 41(12):1423–1445. https://doi.org/10.1016/S0020-7403(98)00107-6

    Article  MATH  Google Scholar 

  30. Cézard P, Favier V, Bigot R, Balan T, Berveiller M (2005) Simulation of semi-solid thixoforging using a micro-macro constitutive equation. Comput Mater Sci 32(3-4):323–328. https://doi.org/10.1016/j.commatsci.2004.09.036

    Article  Google Scholar 

  31. Wang J, Phillion AB, Lu G (2014) Development of a visco-plastic constitutive modeling for thixoforming of AA6061 in semi-solid state. J Alloys Compd 609:290–295. https://doi.org/10.1016/j.jallcom.2014.04.140

    Article  Google Scholar 

  32. Chen G, Lin F, Yao S, Han F, Wei B, Zhang Y (2016) Constitutive behavior of aluminum alloy in a wide temperature range from warm to semi-solid regions. J Alloys Compd 674:26–36. https://doi.org/10.1016/j.jallcom.2016.02.254

    Article  Google Scholar 

  33. Hu XG, Zhu Q, Atkinson HV, Lu HX, Zhang F, Dong HB, Kang YL (2017) A time-dependent power law viscosity model and its application in modelling semi-solid die casting of 319s alloy. Acta Mater 124:410–420. https://doi.org/10.1016/j.actamat.2016.11.031

    Article  Google Scholar 

  34. Sheikh-Ansari MH, Aghaie-Khafri M (2018) A thermodynamic approach to analyze shear localization in semi-solid materials. Contin Mech Thermodyn 30(4):805–815

    Article  MathSciNet  MATH  Google Scholar 

  35. Nagira T, Yokota H, Morita S, Yasuda H, Yoshiya M, Gourlay CM, Sugiyama A, Uesugi K, Umetani K (2013) Characterization of shear deformation based on in-situ observation of deformation in semi-solid Al–cu alloys and water-particle mixture. ISIJ Int 53(7):1195–1201. https://doi.org/10.2355/isijinternational.53.1195

    Article  Google Scholar 

  36. Sheikh-Ansari MH, Aghaie-Khafri M (2018) Predicting flow localization in semi-solid deformation. Int J Mater Form 11(2):165–173

    Article  MATH  Google Scholar 

  37. Suery M, Flemings MC (1982) Effect of strain rate on deformation behavior of semi-solid dendritic alloys. Metall Trans A 13(10):1809–1819. https://doi.org/10.1007/BF02647837

    Article  Google Scholar 

  38. Sheikh-Ansari MH, Aghaie-Khafri M (2018) Shear localization in semi-solid deformation: a bifurcation theory approach. Mech Res Commun 89:1–5

    Article  MATH  Google Scholar 

  39. Kang CG, Choi JS, Kim KH (1999) The effect of strain rate on macroscopic behavior in the compression forming of semi-solid aluminum alloy. J Mater Process Technol 88(1-3):159–168. https://doi.org/10.1016/S0924-0136(98)00383-5

    Article  Google Scholar 

  40. Kim WY, Kang CG, Kim BM (2007) The effect of the solid fraction on rheological behavior of wrought aluminum alloys in incremental compression experiments with a closed die. Mater Sci Eng A 447(1-2):1–10. https://doi.org/10.1016/j.msea.2006.10.019

    Article  Google Scholar 

  41. Zhu QZ, Shao JF, Mainguy M (2010) A micromechanics-based elastoplastic damage model for granular materials at low confining pressure. Int J Plast 26(4):586–602. https://doi.org/10.1016/j.ijplas.2009.09.006

    Article  MATH  Google Scholar 

  42. Hosford WF (1972) A generalized isotropic yield criterion. J Appl Mech 39(2):607–609

    Article  Google Scholar 

  43. Butcher C, Abedini A (2017) Shear confusion: identification of the appropriate equivalent strain in simple shear using the logarithmic strain measure. Int J Mech Sci 134:273–283

    Article  Google Scholar 

  44. Shawki TG, Clifton RJ (1989) Shear band formation in thermal viscoplastic materials. Mech Mater 8(1):13–43. https://doi.org/10.1016/0167-6636(89)90003-3

    Article  Google Scholar 

  45. Pan J (1983) Perturbation analysis of shear strain localization in rate sensitive materials. Int J Solids Struct 19(2):153–164. https://doi.org/10.1016/0020-7683(83)90006-9

    Article  MATH  Google Scholar 

  46. Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23(6):371–394. https://doi.org/10.1016/0022-5096(75)90001-0

    Article  Google Scholar 

  47. Das A, Tengattini A, Nguyen GD, Viggiani G, Hall SA, Einav I (2014) A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part II – validation and localization analysis. J Mech Phys Solids 70:382–405. https://doi.org/10.1016/j.jmps.2014.05.022

    Article  MathSciNet  Google Scholar 

  48. Semiatin SL, Lahoti GD (1981) Deformation and unstable flow in hot forging of Ti-6Ai-2Sn-4Zr-2Mo-0.1Si. Metall Trans A 12(10):1705–1717. https://doi.org/10.1007/BF02643753

    Article  Google Scholar 

  49. Jonas JJ, Holt RA, Coleman CE (1976) Plastic stability in tension and compression. Acta Metall 24(10):911–918. https://doi.org/10.1016/0001-6160(76)90039-0

    Article  Google Scholar 

  50. Binesh B, Aghaie-Khafri M (2016) RUE-based semi-solid processing: microstructure evolution and effective parameters. Mater Des 95:268–286. https://doi.org/10.1016/j.matdes.2016.01.117

    Article  Google Scholar 

  51. DE Freitas ER, Ferrante M (2001) Rheological behaviour and deformation characteristics of a commercial and a laboratory-cast Al-4%cu alloy in the semi-solid state. Acta Mater 49:3839–3847. https://doi.org/10.1016/S1359-6454(01)00239-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aghaie-Khafri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh-Ansari, M.H., Aghaie-Khafri, M. An extension of Rice localization criterion to predict the onset of shear localization in semi-solid materials. Int J Mater Form 12, 703–716 (2019). https://doi.org/10.1007/s12289-018-1445-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-018-1445-0

Keywords

Navigation