Skip to main content

Development of a three-dimensional finite element method simulation model to predict modified flow drilling tool performance


Flow drilling is a relatively unexplored manufacturing process in which the tool penetrates the workpiece with a defined force or defined feed along its rotational axis. This paper presents a developed three-dimensional (3D)-finite element method (FEM) simulation model to predict the performance of modified flow drilling tools. To validate the simulation model, the flow drilling of AlSi10Mg with a non-pre-heated (Tinitial = 20 °C) and pre-heated (Tinfluenced = 200 °C) tool was investigated. Thereby, the comparison of measured and simulated values of temperature, force and torques showed a good agreement. The comparison of the forces and torques concluded in almost identical maximum values. Nevertheless, the pre-heated tool was found to have a significantly more continuous heat distribution and higher bore quality than non-pre-heated flow drills, which can be attributed to the better formability of the cast aluminum alloy at elevated temperatures. Since the results of the simulation showed a good agreement with the experimental values, the three-dimensional model was used to predict the process behavior of a modified flow drilling tool, which could contribute to the optimization of the process. The result show, that the process time could be reduced by half, while the occurring temperatures, forces and torques remained acceptable.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


A :

Initial yield N/mm2

B :

Hardening modulus

Cs :

Strain rate sensitivity

c :

Specific heat, J/(kg∙K)

D :

Cumulative-damage fracture factor

d 1 …d 5 :

Damage constants

d FD :

Tool diameter, mm

d 2 :

Shrank diameter, mm

F :

Force, N

h Cy :

Cylindrical height, mm

h Co :

Conical height, mm

h T :

Tip/center height, mm

k :

Heat conductivity, W/(m∙K)

l :

Length, mm

l t :

Drilling depth (simulation), mm

M t :

Torque, Nm

m :

Thermal softening effect

n :

Rotational speed, 1/min

Rz :

Average surface roughness

t :

Time, s

T :

Homogenous temperature, K

T f :

Friction moment, K

t h :

Thick, mm

T influenced :

Influenced temperature, °C

T initial :

Initial temperature, °C

T m :

Melting temperature, K

T r :

Transition temperature, K

v c :

Peripheral speed

v f :

Feed speed, mm/min

w :

Wide, mm

\( {\dot{q}}_f \) :

Heat generation, m/s

α FD :

Tip/center angle, degree

ε m :

Emission rate

ε plastic :

Plastic strain

β FD :

Conical angle, degree

\( \dot{\varepsilon} \) :

Strain rate, 1/s

\( \dot{\varepsilon_0} \) :

Reference strain rate, 1/s

ε f :

Equivalent strain to fracture, 1/s

\( {\dot{\varepsilon}}_{pl} \) :

Comparative strain rate, 1/s

η :

Hardening exponent

σ :

Flow stress, N/mm2

ρ :

Density, N/m2

ρ h :

Hydrostatic pressure, hPa

ω :

Angular velocity, rad∙s−1


Aluminum alloy








German institute for standardization




European standards


Finite element method


Finite element


















Tungsten carbide

x, y, z:

Cartesian coordinates




  1. Eliseev AA, Fortuna SV, Kolubaev EA, Kalashnikova TA (2017) Microstructure modification of 2024 aluminum alloy produced by friction drilling. Mater Sci Eng 691:121–125.

    Article  Google Scholar 

  2. Bilgin MB, Gök K, Gök A (2015) Three-dimensional finite element model of friction drilling process in hot forming processes. P I Mech Eng B-J Pro 231(3):548–554.

  3. Engbert T, Heymann T, Biermann D, Zabel A (2011) Flow drilling and thread forming of continuously reinforced aluminium extrusions. P I Mech Eng E-J Eng 225:398–407

  4. Ramsay JMG (2008) Fliesslochformen und Gewindefurchen in dünne Bleche und Rohre aus Kupfer und Kupferlegierungen. Inauguraldissertation, Universität Kassel

  5. Gopal Krishna PV, Kishore K, Satyanarayana V (2010) Some investigations in friction drilling AA6351 using high speed steel tools. ARPN. J Eng Appl Sci 5:11–15

    Google Scholar 

  6. Prabhu T, Arulmurugu A (2014) Experimental an analysis of friction drilling on Aluminium and copper. IJMET 5:130–139

    Google Scholar 

  7. Ozek C, Demir Z (2013) Investigate the friction drilling of aluminium alloys according to the thermal conductivity. Tem J 2:93–101

    Google Scholar 

  8. Miller SF, Blau PJ, Shih AJ (2005) Microstructural alterations associated with friction drilling of steel, aluminum, and titanium. J Mater Eng Perform 14(5):647–653.

    Article  Google Scholar 

  9. Boopathi M, Shankar S, Manikandakumar S, Ramesh R (2013) Experimental investigation of friction drilling on brass, aluminium and stainless steel. Process Eng 64:1219–1226.

  10. Gopichand A, Brahmam MV, Bhanuprakash D (2014) Experimental investigations and multi-objective optimization of friction drilling process on AISI 1015. IJAER 3

  11. Nagarajan HN, Kotrappa H, Mallanna C, Venkatesh VC (1981) Mechanics of flow forming. CIRP Ann Manuf Technol 30(1):159–162.

    Article  Google Scholar 

  12. Hirsch J (2011) Aluminium in innovative light-weight car design. Mater Trans 52(5):818–824.

    Article  Google Scholar 

  13. Wittke P, Cyclic WF (2016) Deformation behavior of friction drilled internal threads in AlSi10Mg and AZ31 profiles. Procedia Struct. Integrity 2:3264–3271.

  14. Krauß M (2007) Zur thermischen Ermüdung der Magnesiumbasislegierungen AZ31 und AZ91. Dissertation, University Kassel

  15. Oezkaya E (2016) FEM-basiertes Softwaresystem für die effiziente 3D-Gewindebohrsimulation und Werkzeugoptimierung mittels CFD-Simulation. Vulkan, Essen

  16. Ucun İ, Aslantas K, Oezkaya E, Cicek A (2017) 3D numerical modelling of micro-milling process of Ti6Al4V alloy and experimental validation. Int J Adv Manuf Tech 3(3):250–260.

  17. Zabel A (2016) Prozesssimulation in der Zerspanung – Modellierung von Dreh- und Fräsprozessen. Vulkan, Essen

  18. Dehghan S, Ismail MIS, Ariffin MKA, Baharudin BT, Sulaiman S (2017) Numerical simulation on friction drilling of aluminum alloy. Mater Werkst 48(3-4):241–248.

    Article  Google Scholar 

  19. Danish M, Ginta TL, Wahjoedi BA (2016) Enhanced functional properties of mg alloys by cryogenic machining. IJAER I 11:5055–5059

  20. Hutchinsona B, Barnett MR, Ghaderi A, Cizek P, Sabirov I (2009) Deformation modes and anisotropy in magnesium alloy AZ31. Int J Mater Res 100(4):556–563

    Article  Google Scholar 

  21. Ostermann F (2014) Anwendungstechnologie Aluminium. Springer, Berlin Heidelberg

Download references


The authors gratefully acknowledge funding from the German Research Foundation (DFG) for the research project “Holistic development and characterization of an efficient manufacturing of detachable joints for aluminum and magnesium lightweight materials” (BI498/57).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ekrem Oezkaya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oezkaya, E., Hannich, S. & Biermann, D. Development of a three-dimensional finite element method simulation model to predict modified flow drilling tool performance. Int J Mater Form 12, 477–490 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Finite element method
  • Flow drilling
  • Heat exchange
  • 3D modeling
  • 3D FEM flow drilling simulation