Advertisement

International Journal of Material Forming

, Volume 12, Issue 3, pp 411–428 | Cite as

Numerical simulation of metal forming processes with 3D adaptive Remeshing strategy based on a posteriori error estimation

  • Bessam ZeramdiniEmail author
  • Camille Robert
  • Guenael Germain
  • Thomas Pottier
Original Research
  • 151 Downloads

Abstract

In this work, a fully automated adaptive remeshing strategy, based on a tetrahedral element for 3D metal forming processes, was proposed in order to solve problems associated with the severe mesh distortion that occurs during the computation. The main idea is to use the h-type adaptive mesh in combination with an a-posteriori error estimator measured (by the energy norm) on each finite elements to locally control the mesh modification-as-needed. Once a new mesh is generated, all history-dependent variables must be carefully transferred between subsequent meshes. Therefore, several transfer techniques are described and compared. A special attention is given to restore the local mechanical equilibrium of the system with a new methodology. After presenting the necessary adaptive remeshing steps, some 3D analytic and numerical results using the proposed adaptive strategy are given to demonstrate the capabilities of the proposed equilibrated approach and to illustrate some practical characteristics of our remeshing process.

Keywords

3D metal forming processes Automatic adaptive remeshing A-posteriori error estimator Transfer techniques Equilibrated process 

Notes

References

  1. 1.
    Diez P, Calderon G (2007) Remeshing criteria and proper error representations for goal oriented h-adaptivity. Comput Methods Appl Mech Engrg 196(4-6):719–733MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ainsworth M, Oden JT (1997) A posteriori error estimation in finite element analysis. Comput Methods Appl Mech Engrg 142(1-2):1–88MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Verfurth R (1999) A review of a posteriori error estimation techniques for elasticity problems. Comput Methods Appl Mech Engrg 176(1-4):419–440MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Lo SH (1991) Volume discretization into tetrahedra-1. Verification and orientation of boundary surfaces. Comput Struct 39(5):493–500CrossRefzbMATHGoogle Scholar
  5. 5.
    Lo SH (1991) Volume discretization into tetrahedra-II. 3D triangulation by advancing front approach. Comput Struct 39(5):501–511CrossRefzbMATHGoogle Scholar
  6. 6.
    Dureisseix D, Bavestrello H (2006) Information transfer between incompatible finite element meshes: application to coupled thermo-viscoelasticity. Comput Methods Appl Mech Engrg 85:6523–6541CrossRefzbMATHGoogle Scholar
  7. 7.
    Zeramdini B, Robert C, Germain G, Pottier T (2016) Simulation of metal forming processes with a 3D adaptive remeshing procedure. AIP Conf Proceed.  https://doi.org/10.1063/1.4963636
  8. 8.
    Srikanth A, Zabaras N (2000) Shape optimization and preform design in metal forming processes. Comput Methods Appl Mech Engrg 190(13–14):1859–1901CrossRefzbMATHGoogle Scholar
  9. 9.
    Kumar S, Fourment L, Guerdoux S (2015) Parallel, second-order and consistent remeshing transfer operators for evolving meshes with superconvergence property on surface and volume. Finite Elem Anal Des 93:70–84MathSciNetCrossRefGoogle Scholar
  10. 10.
    Peric D, Hochard C, Dutko M, Owen DRJ (1996) Transfer operators for evolving meshes in small strain elasto-placticity. Comput Methods Appl Mech Engrg 137(3-4):331–344CrossRefzbMATHGoogle Scholar
  11. 11.
    Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery (SPR) and adaptive finite element. Comput Methods Appl Mech Engrg 101(1-3):207–224MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimation. Part I: the recovery technique. Internat J Numer Methods Engrg 33(7):1331–1364MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimation. Part II: error estimates and adaptivity. Internat J Numer Methods Engrg 33(7):1365–1382MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Babuška I, Rheinbildt WC (1978) A posteriori error estimates for the finite element method. Internat J Numer Methods Engrg 12(10):1597–1615CrossRefzbMATHGoogle Scholar
  15. 15.
    Ladevèze P, Coffignal G, Pelle J.P (1986) Accuracy of elastoplastic and dynamic analysis. In Babuška I, Zienkiewicz O.C, Gago J and Oliveira E.R de A, ch.11 Accuracy Estimates and Adaptive Refinements in Finite Element Computations, John Wiley & Sons Ltd pp 181–203Google Scholar
  16. 16.
    Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24(2):337–357MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ladevèze P, Pelle J.P (2004) Mastering calculation in linear and nonlinear mechanics, BerlinGoogle Scholar
  18. 18.
    Boussetta R, Fourment L (2004) A posteriori error estimation and three-dimensional adaptive remeshing: application to error control of non-steady metal forming simulations. AIP Conf Proc 712:2246–2251CrossRefGoogle Scholar
  19. 19.
    Boussetta R, Coupez T, Fourment L (2006) Adaptive remeshing based on a posteriori error estimation for forging simulation. Comput Methods Appl Mech Engrg 195(48-49):6626–6645MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Coorevits P, Bellenger E (2004) Alternative mesh optimality criteria for h-adaptive finite element method. Finite Elem Anal Des 40:2195–1215CrossRefzbMATHGoogle Scholar
  21. 21.
    Ciarlet P.G (1978) The finite element method for elliptic problems. North-Holland publishing company, Amsterdam, New York, 45, 4Google Scholar
  22. 22.
    Khoei AR, Gharehbaghi SA, Tabarraie AR, Riahi A (2007) Error estimation, adaptivity and data transfer in enriched plasticity continua to analysis of shear band localization. Appl Math Model 31(6):983–1000CrossRefzbMATHGoogle Scholar
  23. 23.
    Babuška I, Strouboulis T, Upadhyay CS, Gangaraj SK, Copps K (1994) Validation of a posteriori error estimators by numerical approach. Int J Numer Methods Engrg 37(7):1073–1123MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wiberg NE, Abdulwahab F, Ziukas S (1994) Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. Inter J for Numer Methods Engrg 37(20):3417–3440MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Liszka T, Orkisz J (1980) The finite differences method at arbitrary irregular grids and its application in applied machanics. Comput Struct 11(1-2):83–95CrossRefzbMATHGoogle Scholar
  26. 26.
    Liszka T (1984) An interpolation method for an irregular net of nodes. Int J Numer Methods Engrg 20(9):1599–1612CrossRefzbMATHGoogle Scholar
  27. 27.
    Johnson G.R, Cook W.K (1983) A constitutive model and data for metals subjected to large strains high strain rates and high temperatures. 7th international symposium on Balistics pp 541–547Google Scholar
  28. 28.
    Ayed Y, Germain G, Ammar A, Furet B (2016) Thermo-mechanical characterization of the Ti17 titanium alloy under extreme loading conditions. Int J Adv Manuf Technol 90:5–8.  https://doi.org/10.1007/s00170-016-9476-5 Google Scholar
  29. 29.
    Hu Y, Randolph MF (1998) H-adaptive FE analysis of elasto-plastic non-homogeneous soil with large deformation. Comput Geotech 23(1-2):61–83CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Bessam Zeramdini
    • 1
    Email author
  • Camille Robert
    • 1
  • Guenael Germain
    • 1
  • Thomas Pottier
    • 2
  1. 1.LAMPA, Arts et MétiersAngersFrance
  2. 2.Institut Clement Ader, Ecole Nationale Supérieure des Mines d’Albi Mines d’Albi-CarmauxAlbiFrance

Personalised recommendations