Prediction of strain distribution and four, six, or eight ears depending on single-crystal orientation using a new single crystal criterion

Abstract

Significant progress has been achieved on modeling the influence of plastic anisotropy on forming of polycrystalline metal sheets. In contrast, the effect of crystal orientation on forming of single-crystal sheets has been largely unexplored. In this paper, using a recently developed single crystal criterion, it is shown that the single-crystal orientation has a very strong influence on forming. Results of F.E. simulations of cup drawing and hole expansion are reported. The same set of values of the anisotropy coefficients, which correspond to Al single crystal (with 5% Cu) is used in all simulations. It is predicted that for the {100}〈001〉 orientation four ears develop whereas for the \( \left\{111\right\}\left\langle 1\overline{1}0\right\rangle \) and \( \left\{122\right\}\left\langle 1\overline{1}0\right\rangle \) crystal orientations six, and eight ears form. Moreover, correlations between the location of the ears and the variation of the Lankford coefficients in the plane of the respective single-crystal sheets are established. F.E. analysis of hole expansion also show a strong influence of crystal orientation on the distribution of thickness strains and strain localization.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Change history

  • 14 May 2019

    In the original publication of this paper, an incorrect image of Figure 3 was used in error.

References

  1. 1.

    Barlat F, Lege DJ, Brem JC (1991) A six-component yield function for anisotropic materials. Int J Plast 7(7):693–712

    Article  Google Scholar 

  2. 2.

    Barlat F, Aretz H, Yoon J, Karabin M, Brem J, Dick R (2005) Linear transfomation-based anisotropic yield functions. Int J Plast 21(5):1009–1039

    Article  Google Scholar 

  3. 3.

    Barlat F, Yoon JW, Cazacu O (2007) On linear transformations of stress tensors for the description of plastic anisotropy. Int J Plast 23(5):876–896

    Article  Google Scholar 

  4. 4.

    Cazacu O (2018) New yield criteria for isotropic and textured metallic materials. Int J Solids Struct 139-140. https://doi.org/10.1016/j.ijsolstr.2018.01.036

    Article  Google Scholar 

  5. 5.

    Cazacu O, Barlat F (2001) Generalization of Drucker’s yield criterion to Orthotropy. Math Mech Solids 6(6):613–630. https://doi.org/10.1177/108128650100600603

    Article  MATH  Google Scholar 

  6. 6.

    Cazacu O, Barlat F (2003) Application of the theory of representation to describe yielding of anisotropic aluminum alloys. Int J Eng Sci 41(12):1367–1385

    Article  Google Scholar 

  7. 7.

    Cazacu O, Barlat F (2004) A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals. Int J Plast 20(11):2027–2045

    Article  Google Scholar 

  8. 8.

    Cazacu O, Plunkett B, Barlat F (2006) Orthotropic yield criterion for hexagonal closed packed metals. Int J Plast 22(7):1171–1194

    Article  Google Scholar 

  9. 9.

    Cazacu O, Revil-Baudard, B., Chandola, N. (2019) Plasticity-Damage Couplings: From Single Crystal to Polycrystalline Materials, ISBN 978–3–319-92921-7, Springer

  10. 10.

    Barlat F, Richmond O (1987) Prediction of tricomponent plane stress yield surfaces and associated flow and failure behavior of strongly textured fcc polycrystalline sheets. Mater Sci Eng 95:15–29

    Article  Google Scholar 

  11. 11.

    Banabic D, Barlat F, Cazacu O, Kuwabara T (2010) Advances in anisotropy and formability. Int J Mater Form 3(3):165–189

    Article  Google Scholar 

  12. 12.

    Yoon JH, Cazacu O, Yoon JW, Dick RE (2010) Earing predictions for strongly textured aluminum sheets. Int J Mech Sci 52(12):1563–1578

    Article  Google Scholar 

  13. 13.

    Banabic, D., 2010 Sheet metal forming processes, ISBN 978–3–540-88113-1, Springer

  14. 14.

    Lege DJ, Barlat F, Brem JC (1989) Characterization and modeling of the mechanical behavior and formability of a 2008-T4 sheet sample. Int J Mech Sci 31(7):549–563

    Article  Google Scholar 

  15. 15.

    Yoon JW, Barlat F, Chung K, Pourboghrat F, Yang DY (2000) Earing predictions based on asymmetric nonquadratic yield function. Int J Plast 16(9):1075–1104

    Article  Google Scholar 

  16. 16.

    Kuwabara T, Mori T, Asano M, Hakoyama T, Barlat F (2017) Material modeling of 6016-O and 6016-T4 aluminum alloy sheets and application to hole expansion forming simulation. Int J Plast 93:164–186

    Article  Google Scholar 

  17. 17.

    Barros PD, Simões VM, Neto D.M., Oliveira, MC, Alves, JL, Menezes, LF ( 2013) On the influence of the yield parameters identification procedure in cylindrical cups earing prediction. NUMISHEET 2014 AIP Conf Proc 1567, 512–515

  18. 18.

    Barros PD, Neto DM, Alves JL, Oliveira MC, Menezes LF (2015) DD3IMP, 3D fully implicit finite element solver: implementation of CB2001 yield criterion. Rom J Tech Sci–Appl Mech 60:105–136

    MathSciNet  Google Scholar 

  19. 19.

    Yoon JI, Jung J, Lee HH, Kim GS, Kim HS (2016) Factors governing hole expansion ratio of steel sheets with smooth sheared edge. Met Mater Int 22(6):1009–1014

    Article  Google Scholar 

  20. 20.

    ISO-16630 2017 Metallic materials - Sheet and strip - Hole expanding test

  21. 21.

    Becker R, Smelser RE, Panchanadeeswaran S (1993) Simulations of earing in aluminum single crystals and polycrystals. Model Simul Mater Sci Eng 1(2):203–224

    Article  Google Scholar 

  22. 22.

    Balasubramanian S, Anand L (1996) Single crystal and polycrystal elasto-viscoplasticity: application to earing in cup drawing of FCC materials. Comput Mech 17(4):209–225

    Article  Google Scholar 

  23. 23.

    Tucker GE (1961) Texture and earing in deep drawing of aluminium. Acta Metall 9(4):275–286

    Article  Google Scholar 

  24. 24.

    Cazacu O, Revil-Baudard B, Chandola N (2017) An yield criterion for cubic single crystals. Int J Solids Struct 151. https://doi.org/10.1016/j.ijsolstr.2017.04.006

    Article  Google Scholar 

  25. 25.

    ABAQUS (2013) User’s Manual for Version v. 6.13, vol. I–V. Dassault Systemes Simulia Corp, Providence

    Google Scholar 

  26. 26.

    Karnop R, Sachs G (1928) Festigkeitseigenschaften von Kristallen einer veredelbaren Aluminiumlegierung. Z Für Phys 49(7-8):480–497

    Article  Google Scholar 

  27. 27.

    Gotoh M, Ishise F (1978) A finite element analysis of rigid-plastic deformation of the flange in a deep-drawing process based on a fourth-degree yield function. Int J Mech Sci 20(7):423–435

    Article  Google Scholar 

  28. 28.

    Cazacu O, Chandola N, Revil-Baudard B (2017) Analytical expressions for the yield stress and Lankford coefficients of polycrystalline sheets based on a new single crystal model. Int J Mater Form. https://doi.org/10.1007/s12289-017-1366-3

    Article  Google Scholar 

  29. 29.

    Comstock RJ, Scherrer DK, Adamczyk RD (2006) Hole expansion in a variety of sheet steels. J Mater Eng Perform 15(6):675–683

    Article  Google Scholar 

  30. 30.

    Hashimoto K, Kuwabara T, Iizuka E, Yoon JW (2010) Hole expansion simulation of high strength steel sheet. Int J Mater Form 3(S1):259–262

    Article  Google Scholar 

  31. 31.

    Kuwabara T, Hakoyama T, Maeda T, Sekiguchi C, (2018) Numisheet 2018 Benchmark-1: hole expansion of a high strength steel sheet, Numisheet 2018, July 30-Aug 3, 2018, Tokyo, Japan

  32. 32.

    Stanton M., Bhattacharya R, Dargue I, Aylmore R, and Williams , (2011) Hole expansion of aluminum alloys for the automotive industry. The 14th international ESAFORM conference on material forming AIP Conf. Proc, 1353: 1488–1493

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oana Cazacu.

Ethics declarations

The authors declare that they comply with the ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chandola, N., Cazacu, O. & Revil-Baudard, B. Prediction of strain distribution and four, six, or eight ears depending on single-crystal orientation using a new single crystal criterion. Int J Mater Form 12, 943–954 (2019). https://doi.org/10.1007/s12289-018-01465-0

Download citation

Keywords

  • Single-crystal
  • Earing
  • Hole expansion
  • Anisotropy;forming