Skip to main content
Log in

Process optimization in the self-reacting friction stir welding of aluminum 6061-T6

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Self-reacting friction stir welding (SR-FSW), also called bobbin-tool friction stir welding (BT-FSW), is a solid state welding process similar to friction stir welding (FSW) except that the tool has two opposing shoulders instead of the shoulder and a backing plate found in FSW. The tool configuration results in greater heat input and a symmetrical weld macrostructure. A significant amount of information has been published in the literature concerning traditional FSW while little has been published about SR-FSW. An optimization experiment was performed using a factorial design to evaluate the effect of process parameters on the weld temperature, surface and internal quality, and mechanical properties of self-reacting friction stir welded aluminum alloy 6061-T6 butt joints. The parameters evaluated were tool rotational speed, traverse speed, and tool plunge force. A correlation between weld temperature, defect formation (specifically galling and void formation), and mechanical properties was found. Optimum parameters were determined for the welding of 8-mm-thick 6061-T6 plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Mishra RS (2007) Friction stir welding and processing, 1st edn. ASM International, Materials Park

    Google Scholar 

  2. Esmaily M, Mortazavi N, Osikowicz W et al (2016) Bobbin and conventional friction stir welding of thick extruded AA6005-T6 profiles. Mater Des 108:114–125. doi:10.1016/j.matdes.2016.06.089

    Article  Google Scholar 

  3. Chen SJ, Lu AL, Yang DL et al (2013) Analysis on flow pattern of bobbin tool friction stir welding for 6082 aluminum. In: Fujii H (ed) Proc. 1st Int. Jt. Symp. Join. Weld. Woodhead Publishing, Cambridge, pp 353–358

    Chapter  Google Scholar 

  4. Srivatsan TS, Vasudevan S, Park L (2007) The tensile deformation and fracture behavior of friction stir welded aluminum alloy 2024. Mater Sci Eng A 466:235–245. doi:10.1016/j.msea.2007.02.100

    Article  Google Scholar 

  5. Nandan R, DebRoy T, Bhadeshia HKDH (2008) Recent advances in friction-stir welding – process, weldment structure and properties. Prog Mater Sci 53:980–1023. doi:10.1016/j.pmatsci.2008.05.001

    Article  Google Scholar 

  6. Chao YJ, Qi X, Tang W (2003) Heat transfer in friction stir welding—experimental and numerical studies. J Manuf Sci Eng 125:138–145. doi:10.1115/1.1537741

    Article  Google Scholar 

  7. Hwang Y-M, Kang Z-W, Chiou Y-C, Hsu H-H (2008) Experimental study on temperature distributions within the workpiece during friction stir welding of aluminum alloys. Int J Mach Tools Manuf 48:778–787. doi:10.1016/j.ijmachtools.2007.12.003

    Article  Google Scholar 

  8. Adamowski J, Gambaro C, Lertora E et al (2007) Analysis of FSW welds made of aluminium alloy AW6082-T6. Arch Mater Sci Eng 28:453–460

    Google Scholar 

  9. Vilaça P, Quintino L, dos Santos JF (2005) iSTIR—analytical thermal model for friction stir welding. J Mater Process Technol 169:452–465. doi:10.1016/j.jmatprotec.2004.12.016

    Article  Google Scholar 

  10. Woo W, Choo H, Withers PJ, Feng Z (2009) Prediction of hardness minimum locations during natural aging in an aluminum alloy 6061-T6 friction stir weld. J Mater Sci 44:6302–6309. doi:10.1007/s10853-009-3868-y

    Article  Google Scholar 

  11. Sato YS, Urata M, Kokawa H (2002) Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063. Metall Mater Trans A 33:625–635. doi:10.1007/s11661-002-0124-3

    Article  Google Scholar 

  12. Lityńska L, Braun R, Staniek G et al (2003) TEM study of the microstructure evolution in a friction stir-welded AlCuMgAg alloy. Mater Chem Phys 81:293–295. doi:10.1016/S0254-0584(02)00605-3

    Article  Google Scholar 

  13. Elangovan K, Balasubramanian V (2008) Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints. Mater Charact 59:1168–1177. doi:10.1016/j.matchar.2007.09.006

    Article  Google Scholar 

  14. Scialpi A, De Filippis LAC, Cavaliere P (2007) Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy. Mater Des 28:1124–1129. doi:10.1016/j.matdes.2006.01.031

    Article  Google Scholar 

  15. Kumar K, Kailas SV (2008) The role of friction stir welding tool on material flow and weld formation. Mater Sci Eng A 485:367–374. doi:10.1016/j.msea.2007.08.013

    Article  Google Scholar 

  16. Moreira PMGP, Santos T, Tavares SMO et al (2009) Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6. Mater Des 30:180–187. doi:10.1016/j.matdes.2008.04.042

    Article  Google Scholar 

  17. Liu H, Fujii H, Maeda M, Nogi K (2003) Tensile properties and fracture locations of friction-stir welded joints of 6061-T6 aluminum alloy. J Mater Sci Lett 22:1061–1063. doi:10.1023/A:1024970421082

    Article  Google Scholar 

  18. Vijayan S, Raju R, Subbaiah K et al (2010) Friction stir welding of al–mg alloy optimization of process parameters using Taguchi method. Exp Tech 34:37–44. doi:10.1111/j.1747-1567.2009.00563.x

    Article  Google Scholar 

  19. Xu S, Deng X (2008) A study of texture patterns in friction stir welds. Acta Mater 56:1326–1341. doi:10.1016/j.actamat.2007.11.016

    Article  Google Scholar 

  20. Liu HJ, Hou JC, Guo H (2013) Effect of welding speed on microstructure and mechanical properties of self-reacting friction stir welded 6061-T6 aluminum alloy. Mater Des 50:872–878. doi:10.1016/j.matdes.2013.03.105

    Article  Google Scholar 

  21. Wang FF, Li WY, Shen J et al (2015) Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir welding of al–li alloy. Mater Des 86:933–940. doi:10.1016/j.matdes.2015.07.096

    Article  Google Scholar 

  22. Liu G, Murr LE, Niou C-S et al (1997) Microstructural aspects of the friction-stir welding of 6061-T6 aluminum. Scr Mater 37:355–361. doi:10.1016/S1359-6462(97)00093-6

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of this research provided by the Materials and Processes Branch at NASA Johnson Space Center and Jacobs ESCG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Trueba Jr.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trueba, L., Torres, M.A., Johannes, L.B. et al. Process optimization in the self-reacting friction stir welding of aluminum 6061-T6. Int J Mater Form 11, 559–570 (2018). https://doi.org/10.1007/s12289-017-1365-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-017-1365-4

Keywords

Navigation