Advertisement

International Journal of Material Forming

, Volume 11, Issue 2, pp 213–224 | Cite as

Experimental and analytical investigation of the force requirements in shear cutting of metal-polymer-metal composites

  • Peter GrocheEmail author
  • David Übelacker
  • Philipp Stein
  • Frank Steinbach
  • A. Erman Tekkaya
Original Research

Abstract

The increasing demand for lightweight design requires the use of multi materials such as metal-polymer-metal composites. These so-called sandwich panels offer a good stiffness-to-weight ratio. Production technologies like shear cutting have to be adapted for these materials. For a targeted adaption, a comprehensive knowledge about the cutting phases of the shear cutting process of sandwich panels is essential. Therefore, within this paper, the shear cutting process of sandwich panels is studied in detail. The conducted experimental studies indicate that the shear cutting process can be divided into five stages. Based on these findings, a new analytic model is introduced to predict the force displacement curves of sandwich panels. The quality of the new model is proven by comparison with existing analytic models for monolithic materials as well as with the experimental data.

Keywords

Shear cutting Metal-polymer-metal composites Shear cutting force Process monitoring 

Nomenclature

Dummy

Aeff

Compressed area

As

Shear area

C

Work hardening factor

C

Shear correction factor

D

Punch diameter

E

E-Modulus

FS

Shearing force

kf

Yield stress

ks

Shear resistance

ls

Shear length

m

Friction factor

n

Work hardening coefficient

r

Rollover

rP

Punch radius

Rm

Maximum tensile strength

t0

Layer thickness

t

Actual sheet thickness

u

Clearance

w

Shear band width

Greek letters

α

Angle within circular section

γ

Shear strain

γ0

Current shear strain

γf

Fracture shear strain

δ

Punch displacement

φ

Equivalent strain

φ0

Initial equivalent strain

κ

Strain factor

μ

Friction factor (Coulomb)

ψ

Stress factor

τB

Shear strength

τ

Shear stress

τ0

Shear strength

Indexes

c

Core

d

Die

ls

Lower sheet

p

Punch

us

Upper sheet

Notes

Acknowledgments

The authors are grateful for the support of the German Research Foundation (DFG) for funding the project DFG Gr 1818/44-1 as well as for the support of the German Federation of Industrial Research Association “Otto von Guericke” (AiF) and the Research Association of Steel Application (FOSTA) for funding the projects IGF-Nr. 17791 N and 17793 N. All projects are embedded in the Research Cluster PAK 678/0 “Dry Shear Cutting of Metal Laminated Composite Material” supported by DFG and AiF.

Moreover, the authors would like to thank 3A Composites for their support by providing Alucobond and Hylite Foamed material as well as all other contributors of the joint research project. Markus Petershofen is thanked for his effort within his activity as a student assistant.

Compliance with ethical standards

Conflict of interest

None.

References

  1. 1.
    Groche P, Ibis M, Hatzfeld C, Stöckigt A, Gerlitzky C (2014) Economic production of load-bearing sheet metal parts with printed strain gages by combining forming and screen printing. Int J Mater Form 8:269–282CrossRefGoogle Scholar
  2. 2.
    Vinson JR, Sierakowski RL (2008) The behavior of structures composed of composite materials, second edn. Springer, Berlin, pp 2–6zbMATHGoogle Scholar
  3. 3.
    Buhl J (2009) Umformverhalten und Grenzen von Schichtverbundwerkstoffen. Doctoral thesis, (University of Siegen). (german only)Google Scholar
  4. 4.
    Weiss M, Dingle ME, Rolfe BF, Hodgson PD (2007) The influence of temperature on the forming behavior of metal/polymer laminates in sheet metal forming. J Eng Mater Technol 129:530–537CrossRefGoogle Scholar
  5. 5.
    Kim KJ, Kim D, Choi SH, Chung K et al (2003) Formability of AA5182/polypropylene/AA5182 sandwich sheets. J Mater Process Technol 139:1–7CrossRefGoogle Scholar
  6. 6.
    Carradò A, Faerber J, Niemeyer S, Ziegmann G et al (2011) Metal/polymer/metal hybrid systems: towards potential formability applications. Compos Struct 93:715–721CrossRefGoogle Scholar
  7. 7.
    Takiguchi M, Yoshida F (2003) Deformation characteristics and delamination strength of adhesively bonded aluminum alloy sheet under plastic bending. JSME 46-1:68–75Google Scholar
  8. 8.
    Sokolova O (2013) Study of metal/polymer/metal hybrid sandwich composites for the automotive industry. Dissertation, TU Clausthal, Clausthal-Zellerfeld, Papierflieger Verlag GmbHGoogle Scholar
  9. 9.
    Liewald M, Bolay C, Thullner S (2013) Shear cutting and counter shear cutting of sandwich materials. J Manuf Process 15-3:364–373CrossRefGoogle Scholar
  10. 10.
    Stein P, Übelacker D, Holke D, Groche P (2015) Experimental Investigation oft he Shear Cutting Behaviour of Sandwich Panels. Materials Science Forum, 20th Symposium on Composites, 443–440Google Scholar
  11. 11.
    Groche P, Stein P, Übelacker D, Neumayer F, Steinbach F (2015) Trockenscherschneiden von Verbundblechen. Werkstatttechnik online 105(10):733–737Google Scholar
  12. 12.
    Übelacker D, Hohmann J, Groche P (2014) Force requirements in shear cutting of metal-polymer-metal composites. Adv Mater Res 1018:137–144CrossRefGoogle Scholar
  13. 13.
    Groche P, Brenneis M (2014) Manufacturing and use of novel sensoric fasteners for monitoring forming processes. Measurement 53, S. 136–144Google Scholar
  14. 14.
    Lange K (1985) Handbook of metal forming. McGraw-Hill Book Company, New YorkGoogle Scholar
  15. 15.
    Bach EL (1923) Die Spannungen unter einem kreisrunden Stempel. Doctoral thesis, (University of Karlsruhe). (german only)Google Scholar
  16. 16.
    Oehler G, Kaiser F (1973) Schnitt-, Stanz- und Ziehwerkzeuge. Springer-Verlag, BerlinCrossRefGoogle Scholar
  17. 17.
    Spur G, Hoffmann H, Neugebauer R (2012) Handbuch der Fertigungstechnik. Handbuch Umformen. Carl Hanser Verlag, MünchenGoogle Scholar
  18. 18.
    Atkins AG (1980) On cropping and related processes. Int J Mech Sci 22:215–231CrossRefGoogle Scholar
  19. 19.
    Martins PAF, Atkins AG (2013) Revisiting the empirical relation for the maximum shearing force using plasticity and ductile fracture mechanics. J Mater Process Technol 213:1516–1522CrossRefGoogle Scholar
  20. 20.
    Klingenberg W, Singh UP (2004) Comparison of two analytical models of blanking and proposal of a new model. Int J Mach Tools Manuf 45:519–527CrossRefGoogle Scholar
  21. 21.
    Ramaekers JAH (1970) Härte und Verformung metallischer Werkstoffe. Dr. Ir. Dissertation (Technische Hogeschool Eindhoven, Niederlande). (german only)Google Scholar
  22. 22.
    Zhou Q, Wierzbicki T (1995) A tension zone model of blanking and tearing of ductile metal plates. Int J Mech Sci 38 Nr. 3, 303–324Google Scholar
  23. 23.
    3A Composites (2016) http://www.alucobond.com/ (requested on April 19th 2016)
  24. 24.
    Geiger M, Merklein M, Kauper M (2008) Investigation of the mechanical behaviour of advanced high strength steels under various loading conditions. Int J Mater Form 1:225–228CrossRefGoogle Scholar
  25. 25.
    Ramaekers JAH, Kals, JAG (1986) Strain, stresses and forces in blanking. Proceedings of the Third Conference of IMC, Galway, S. 126–138Google Scholar

Copyright information

© Springer-Verlag France 2017

Authors and Affiliations

  • Peter Groche
    • 1
    Email author
  • David Übelacker
    • 1
  • Philipp Stein
    • 1
  • Frank Steinbach
    • 2
  • A. Erman Tekkaya
    • 2
  1. 1.Institute for Production Engineering and Forming MachinesTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Institute of Forming Technology and Lightweight ConstructionTechnische Universität DortmundDortmundGermany

Personalised recommendations