A multiphase Eulerian approach for modelling the polymer injection into a textured mould


Micro-injection moulding is frequently used for the fabrication of devices in many different fields such as micro-medical technologies, micro-optics and micro-mechanics thanks to its effectiveness for mass production. This work focuses mainly on offering numerical methodology to model the injection into textured moulds. Such approach can predict the different filling scenarios of the micro-details and consequently can provide optimal operating conditions (mould and melt temperatures, flow rate) according to the desired final part quality. In fact, numerical simulations made with industrial software can only describe the injection process at the macroscopic scale where the micro details are not detected. Although the melt temperature and front evolution are tracked throughout time, neither the micro details nor the local heat transfer are properly represented. Since the latter impacts the local viscosity and solidification, simulation of both mould and cavity temperature evolutions is primordial to insure a complete and accurate representation of textured mould filling. The present computations are made at both macro- and micro- scales by using a full Eulerian approach in which the three phases (melt, mould and air) are described by level-set functions. Our numerical approach is checked to the replication of a textured mould for which two dimensional computations are relevant. This replication is properly modelled by taking into account viscosity dependence with temperature in the thermal boundary layer at the melt/mould interface. In particular the expected solidification below a specific temperature is taken into account by either increasing drastically the viscosity or by imposing a vanishing velocity by penalty method. The influence of flow rate and mould temperature are also analysed whereas it is shown that the surface tension can be neglected during injection stage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Agassant J-F, Avenas P, Sergent J-P, Vergnes B, Vincent M (2014) Mise en forme des polymères : Approche thermomécanique de la plasturgie. Lavoisier 4ème Edition (in French)

  2. 2.

    Angelov A, Coulter J (2004) Micromolding product manufacture-a progress report. In: Proceedings of the annual technical conference (ANTEC 2004). Chicago

  3. 3.

    Attia U M, Marson S, Alcock J R (2009) Micro-injection moulding of polymer microfluidic devices. Microfluid Nanofluid 7:1–28

    Article  Google Scholar 

  4. 4.

    Coupez T (1994) A mesh improvement method for 3D automatic remeshing. In: Weatherill NP et al (eds) Numerical grid generation in computational fluid dynamics and related fields. Pineridge Press, pp 615–626

  5. 5.

    Coupez T (2011) Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing. J Comput Phys 230(7):2391–2405

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Coupez T, Digonnet H, Hachem E, Laure P, Silva L, Valette R (2013) Multidomain finite element computations. In: Arbitrary Lagrangian-Eulerian and fluid–structure interaction. Wiley, pp 221–290

  7. 7.

    Coupez T, Silva L, Hachem E (2015) Implicit boundary and adaptive anisotropic meshing. In: Perotto E, Formaggia S (eds), vol 5. Springer International Publishing, pp 1–18

  8. 8.

    COMSOL Multiphysics®; https://www.comsol.com/

  9. 9.

    El Otman R, Zinet M, Boutaous M, Benhadid H (2011) Numerical simulation and thermal analysis of the filling stage in the injection molding process: role of the mold-polymer interface. J Appl Polym Sci 121:1579–1592

    Article  Google Scholar 

  10. 10.

    Francois G, Ville L, Silva L, Vincent M (2013) Multi criteria adaptive meshing for polymers processing in Rem3D®;. Key Eng Mater 554–557:1649–1657

    Article  Google Scholar 

  11. 11.

    Gruau C, Coupez T (2005) 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric. Comput Methods Appl Mech Engrg 194(48–49):4951–4976

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Gava A, Lucchetta G (2012) On the performance of a viscoelastic constitutive model for micro injection moulding simulations. eXPRESS Polym Lett 6(5):417–426. doi:10.3144/expresspolymlett.2012.44

    Article  Google Scholar 

  13. 13.

    Giboz J, Copponnex T, Mélé P (2007) Micro-injection molding of thermoplastic polymers: a review. J Micromech Microeng 17: R96

    Article  Google Scholar 

  14. 14.

    Hill S, Kamper K, Dasbach U, Dopper J, Ehrfeld W, Kaupert M (1995) An investigation of computer modelling for microinjection moulding. In: Proceedings of microsym’95

  15. 15.

    Kukla C, Loib H, Detter H, Hannenheim W (1998) Micro-injection moulding-the aims of a project partnership. Kunsts Plast Eur 88(9):6–7

    Google Scholar 

  16. 16.

    Larochette M, Brulez A C, Vera J, Benayoun S (2015) Development of an instrumented mold for the replication of textured surfaces by injection molding: optimization of the replication quality. Polymer replication on nanoscale. In: 2nd International conference. Copenhagen

  17. 17.


  18. 18.

    Piotter V, Hanemann T, Ruprecht R, Hausselt J (1997) Injection molding and related techniques for fabrication of microstructures. Microsyst Technol 3:129–133

    Article  Google Scholar 

  19. 19.

    Piotter V, Mueller K, Plewa K, Ruprecht R, Hausselt J (2002) Performance and simulation of thermoplastic micro injection molding. Microsyst Technol 8:387–390

    Article  Google Scholar 

  20. 20.

    Ramière I (2008) Convergence analysis of the Q1-finite element method for elliptic problems with non-boundary fitted meshes. Int J Numer Methods Eng 75(9):1007–1052

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Rytka C, Kristiansen P M, Neyer A (2015) Iso- and variothermal injection compression moulding of polymer micro- and nanostructures for optical and medical applications. J. Micromech Microeng 25:065008

    Article  Google Scholar 

  22. 22.

    Rytka C, Lungershausen J, Kristiansen PM, Neyer A (2016) 3D filling simulation of micro- and nanostructures in comparison to iso- and variothermal injection moulding trials. J Micromech Microeng 26:065018

    Article  Google Scholar 

  23. 23.

    Rem3D®; http://www.transvalor.com/en/cmspages/rem3d.7.html

  24. 24.

    Sha B, Dimov S, Griffiths C, Packianather M S (2007) Investigation of micro-injection moulding: factors affecting the replication quality. J Mater Process Technol 183:284–296

    Article  Google Scholar 

  25. 25.

    Su Y C, Shah J, Lin L (2004) Implementation and analysis of polymetric microstructure replication by micro injection moulding. Inst Phys Publ J Micromech Microeng 14:422

    Google Scholar 

  26. 26.

    Sollogoub C, Felder E, Demay Y, Agassant J-F, Deparis P, Mikler N (2008) Thermomechanical analysis and modeling of the extrusion coating process. Polym Eng Sci 48:1634–1648. doi:10.1002/pen.21099

    Article  Google Scholar 

  27. 27.

    Shen Y, Yeh S, Chen S (2002) Three-dimensional non-newtonian computations of micro-injection molding with the finite element method international communications in heat and mass Transfer 29:643–652

  28. 28.

    Shen Y-K, Chang C-Y, Shen Y-S, Hsu S-C, Wu M-W (2008) Analysis for microstructure of microlens arrays on micro-injection molding by numerical simulation. Int Commun Heat Mass Transfer 35:723–727

    Article  Google Scholar 

  29. 29.

    Tolinski M (2005) Macro challenges in micromolding. Plast Eng 61(9):14–16

    Google Scholar 

  30. 30.

    Ville L, Silva L, Coupez T (2011) Convected level set method for the numerical simulation of fluid buckling. Int J Numer Methods Fluids 66(3):324–344

    Article  MATH  Google Scholar 

  31. 31.

    Vera J, Brulez A-C, Contraires E, Larochette M, Valette S, Benayoun S (2015) Influence of the polypropylene structure on the replication of nanostructures by injection molding. J Micromechan Microeng 25:115027

    Article  Google Scholar 

  32. 32.

    Weber L, Ehrfeld W, Freimuth H, Lacher M, Lehr H, Pech B (1996) Micromolding: a powerful tool for large-scale production of precise microstructures. In: Proceedings of SPIE—the international society for optical engineering. Austin

  33. 33.

    Weber L, Ehrfeld W (1998) Molding of microstructures for high-tech applications. In: Proceedings of the 56th annual technical conference (ANTEC 1998). Part 3 (of 3), Atlanta

  34. 34.

    Weber L, Ehrfeld W (1999) Micromoulding: market position and development potential. Kunststoffe 89 (10):192–202

    Google Scholar 

  35. 35.

    Willams M L, Landel R F, Ferry D H (1955) Temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Amer Chem Soc 77:3701–3706

    Article  Google Scholar 

  36. 36.

    Wu P H, Cheng C W, Chang C P, Wu T M, Wang J K (2011) Fabrication of large-area hydrophobic surfaces with femtosecond-laser-structured molds. J Micromech Microeng 21(11):115032

    Article  Google Scholar 

  37. 37.

    Xie L, Jiang B, Shen L (2011) Modelling and simulation for micro injection molding process. INTECH Open Access Publisher

  38. 38.

    Yao D, Kim B (2002) Simulation of the filling process in micro channels for polymeric materials. J Micromech Microeng 12:604

    Article  Google Scholar 

  39. 39.

    Yang C, Yin X-H, Cheng G-M (2013) Microinjection molding of microsystem components: new aspects in improving performance. J Micromech Microeng 23:093001

    Article  Google Scholar 

  40. 40.

    Yoshii M, Kuramoto H (1994) Experimental study of transcription of minute width grooves in injection moulding. Polym Eng Sci 34(15):1215

    Article  Google Scholar 

  41. 41.

    Yu L, Koh C, Lee L, Koelling K, Madou M (2002) Experimental investigation and numerical simulation of injection molding with micro-features. Polym Eng Sci 42(5):871–888

    Article  Google Scholar 

  42. 42.

    Yu L, Lee L, Koelling K (2004) Flow and heat transfer simulation of injection molding with microstructures. Polym Eng Sci 44(10):1866–1876

    Article  Google Scholar 

  43. 43.

    Zhao J, Mayes R, Chen G, Chan PS, Xiong Z J (2003) Polymer micromould design and micromoulding process. Plast Rubber Compos 32(6):240–247

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Patrice Laure.

Ethics declarations


R. Nakhoul has received a grant from ANR TopoInjection project which has also support this study

Conflict of interests

The authors declare also that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakhoul, R., Laure, P., Silva, L. et al. A multiphase Eulerian approach for modelling the polymer injection into a textured mould. Int J Mater Form 11, 53–66 (2018). https://doi.org/10.1007/s12289-016-1328-1

Download citation


  • Micro-injection moulding
  • FEM modelling
  • Eulerian Formulation
  • Heat transfer
  • Polymer