Skip to main content
Log in

Thermal modeling in electricity assisted incremental sheet forming

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

A thermal model was built to account for the effects of geometrical parameters of sheet specimen, process parameters and material parameters on the temperature increase of the sheet specimen in Electricity-Assisted Incremental Sheet Forming (EISF). In the EISF, the local area of sheet specimen contacting with a forming tool is heated by direct current, which flows through the forming tool to the sheet specimen. EISF experiments of two high strength steel sheets were carried out to validate the thermal model. The thermal model can be integrated into the control program of EISF system to achieve more accurate temperature control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Allwood JM, Shouler DR, Tekkaya AE (2007) The increased forming limits of incremental sheet forming processes. Key Eng Mater 344:621–628

    Article  Google Scholar 

  2. Allwood JM, Shouler DR (2009) Generalised forming limit diagrams showing increased forming limits with non-planar stress states. Int J Plast 25:1207–1230

    Article  MATH  Google Scholar 

  3. Emmens WC, van den Boogaard AH (2009) An overview of stabilizing deformation mechanisms in incremental sheet forming. J Mater Process Technol 209:3688–3695

    Article  Google Scholar 

  4. Emmens WC, van den Boogaard AH (2011) Cyclic stretch-bending: Mechanics, stability and formability. J Mater Process Technol 211:1965–1981

    Article  Google Scholar 

  5. Meier H, Magnus C, Smukala V (2011) Impact of superimposed pressure on dieless incremental sheet metal forming with two moving tools. CIRP Ann Manuf Technol 60:327–330

    Article  Google Scholar 

  6. Seong DY, Haque MZ, Kim JB, Stoughton TB, Yoon JW (2014) Suppression of necking in incremental sheet forming. Int J Solids Struct 51:2840–2849

    Article  Google Scholar 

  7. Ambrogio G, Filice L, Gagliardi F (2012) Formability of lightweight alloys by hot incremental sheet forming. Mater Des 34:501–508

    Article  Google Scholar 

  8. Meier H, Magnus C (2013) Incremental sheet metal forming with direct resistance heating using two moving tools. Key Eng Mater 554(557):1362–1367

    Article  Google Scholar 

  9. Al-Obaidi A, Kräusel V, Landgrebe D (2016) Hot single-point incremental forming assisted by induction heating. Int J Adv Manuf Technol 82:1163–1171

    Article  Google Scholar 

  10. Karbasian H, Tekkaya AE (2010) A review on hot stamping. J Mater Process Technol 210:2103–2118

    Article  Google Scholar 

  11. Min J, Lin J, Li J, Bao W (2010) Investigation on hot forming limits of high strength steel 22MnB5. Comput Mater Sci 49:326–332

    Article  Google Scholar 

  12. Göttmann A, Diettrich J, Bergweiler G, Bambach M, Hirt G, Loosen P, Poprawe R (2011) Laser-assisted asymmetric incremental sheet forming of titanium sheet metal parts. Prod Eng 5:263–271

    Article  Google Scholar 

  13. Hino R, Kawabata K, Yoshida F (2014) Incremental forming with local heating by laser irradiation for magnesium alloy sheet. Protein Eng 81:2330–2335

    Google Scholar 

  14. Duflou JR, Clarke R, Merklein M, Micari F, Shirvani B, Kellens K (2011) Investigation on incremental sheet forming combined with laser heating and stretch forming for the production of lightweight structures. Key Eng Mater 473:919–928

    Article  Google Scholar 

  15. Fan G, Gao L, Hussain G, Wu Z (2008) Electric hot incremental forming: A novel technique. Int J Mach Tools Manuf 48:1688–1692

    Article  Google Scholar 

  16. Adams D, Jeswiet J (2014) Single point incremental forming of 6061-T6 using electrically assisted forming methods. Proc Inst Mech Eng Part B J Eng Manuf 228:757–764

    Article  Google Scholar 

  17. Liu R, Lu B, Xu D, Chen J, Chen F, Ou H, Long H (2016) Development of novel tools for electricity-assisted incremental sheet forming of titanium alloy. Int J Adv Manuf Technol. doi:10.1007/s00170-015-8011-4

  18. Magnus C (2015) Lokale joulesche Erwärmung der Umformzone in der roboterbasierten inkrementellen Blechumformung. Ruhr-Universität Bochum, Dissertation

    Google Scholar 

  19. Fan G, Sun F, Meng X, Gao L, Tong G (2010) Electric hot incremental forming of Ti-6Al-4 V titanium sheet. Int J Adv Manuf Technol 49:941–947

    Article  Google Scholar 

  20. Ambrogio G, Ciancio C, Filice L, Gagliardi F (2016) Theoretical model for temperature prediction in Incremental Sheet Forming – Experimental validation. Int J Mech Sci 108–109:39–48

    Google Scholar 

  21. Li Y, Daniel WJT, Liu Z, Lu H, Meehan PA (2015) Deformation mechanics and efficient force prediction in single point incremental forming. J Mater Process Technol 221:100–111

    Article  Google Scholar 

  22. Adams D, Jeswiet J (2015) A new model for contact geometry in single-point incremental forming. Proc Inst Mech Eng Part B J Eng Manuf 229:982–989

    Article  Google Scholar 

  23. Silva MB, Skjoedt M, Atkins AG, Bay N, Martins PAF (2008) Single-point incremental forming and formability–failure diagrams. J Strain Anal Eng Des 43:15–35

    Article  Google Scholar 

  24. Jackson K, Allwood J (2009) The mechanics of incremental sheet forming. J Mater Process Technol 209:1158–1174

    Article  Google Scholar 

  25. Dilthey U (2016) Schweißtechnische Fertigungsverfahren 1: Schweiß- und Schneidtechnologien, 3., bearbeitete, auflage edn. Springer, Berlin

    Google Scholar 

  26. Krause M (1993) Widerstandpressschweissen: Grundlagen-Verfahren-Anwendung, Die schweisstechnische Praxis, vol. 25. Dt. Verl. für Schweisstechnik, DVS-Verl.,Düsseldorf .

  27. Husmann T, Magnus CS (2016) Thermography in incremental forming processes at elevated temperatures. Measurement 77:16–28

    Article  Google Scholar 

  28. Magnus CS (2016) Joule heating of the forming zone in incremental sheet metal forming: Part 2. Int J Adv Manuf Technol. doi:10.1007/s00170-016-9008-3

  29. Min J, Lin J, Min Y (2013) Effect of thermo-mechanical process on the microstructure and secondary-deformation behavior of 22MnB5 steels. J Mater Process Technol 213:818–825

Download references

Acknowledgments

Junying Min would like to thank the generous support from Alexander von Humboldt Foundation who awarded him a research fellowship at the Ruhr-University Bochum. The authors also appreciate Dr. Christian Magnus for providing the experimental data of the CP-K60/78 steel. The authors would also like to thank the reviewers of the IJFO for their many comments and suggestions to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junying Min.

Ethics declarations

(The authors declare that they have no conflict of interest.)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, J., Seim, P., Störkle, D. et al. Thermal modeling in electricity assisted incremental sheet forming. Int J Mater Form 10, 729–739 (2017). https://doi.org/10.1007/s12289-016-1315-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-016-1315-6

Keywords

Navigation