International Journal of Material Forming

, Volume 9, Issue 5, pp 635–651 | Cite as

Investigation of the surface integrity and fatigue strength of Inconel718 after wire EDM and machine hammer peening

  • D. TrauthEmail author
  • F. Klocke
  • D. Welling
  • M. Terhorst
  • P. Mattfeld
  • A. Klink
Original Research


Highly stressed turbine blades made of Inconel718 (DIN NiCr19NbMo (2.4668); ASTM B637; UNS N07718) have to satisfy stringent requirements regarding durability and reliability. The impact of surface integrity on the fatigue strength of the workpiece material has proven to be of significant importance. An optimization of the surface integrity after wire EDM of Inconel718 can be achieved using the surface finishing process machine hammer peening. Machine hammer peening is an incremental forming process which has the potential to induce residual compressive stresses and strain hardening while smoothing surface asperities. As the effect of machine hammer peening on surface integrity has not yet been completely investigated, this paper deals with its description and modeling of the unknown impact of machine hammer peening on the fatigue strength of Inconel718. Wire EDM and machine hammer peening parameters maximizing the fatigue strength are presented. Experimental measurements are performed to quantify the surface integrity, especially surface roughness, compressive residual stresses and strain hardening, after wire EDM and subsequent machine hammer peening. The evaluation of the effect of surface integrity on the fatigue strength is carried out using a bending fatigue strength testing machine. Additionally, a finite element model is developed to analyze the surface integrity under load and to reveal the effects of difficult-to-measure properties on the fatigue strength. Based on the new knowledge gained during this work, a model to predict the fatigue strength using similitude theory is presented. Along with the previously analyzed correlations between surface integrity and fatigue strength, this allows a constructive setting of machine hammer peening parameters. Thereby, a significant new contribution to knowledge about the influence of machine hammer peening on surface integrity and fatigue strength of Inconel718 is made. The presented approach can be easily transferred to other materials and workpiece geometries.


Surface integrity Wire EDM Machine hammer peening Fatigue strength Cyclic loading Similitude theory 



This work was partly supported by German Research Foundation (DFG) KL 500/135-1. The authors would like to thank Dr. Vladimir Bäcker for his inspiring preliminary work and Brigitte Niederbach for her support in conducting the metallographic analyses.


  1. 1.
    Klocke F, Bäcker V (2010) Local and global modelling of the deep rolling process on turbine and compressor blades. In: Hirt G. (ed) Modelling of incremental forming processes: final report of the DFG priority programme SPP 1146, 2003 2009. Shaker Verlag, Aachen, pp 215–235Google Scholar
  2. 2.
    Cumpsty N-A (2004) Compressor aerodynamics. Krieger PublishingGoogle Scholar
  3. 3.
    Rossmann A (2000) Die Sicherheit von Turbo-Flugtriebwerken. Problemorientierte Triebwerkstechnik für Untersucher, Gutachter, Dienststellen und Behörden, Betreiber, Qualitätssicherung, Konstrukteure, Wartung und Kundendienst. Turbo-ConsultGoogle Scholar
  4. 4.
    Button K (2008) The Impacts of Globalisation on International Air Transport Activity. Global forum on transport and environment in a globalising world1–40Google Scholar
  5. 5.
    Cantero JL, Diaz-Alvarez J, Miguelez MH, Marin NC (2013) Analysis of tool wear patterns in finishing turning of Inconel 718. Wear 297(1–2):885–894CrossRefGoogle Scholar
  6. 6.
    Klocke F, Welling D, Klink A, Veselovac D, Nöthe T, Perez R (2014) Evaluation of advanced wire-EDM capabilities for the manufacture of fir tree slots in Inconel 718. Procedia CIRP 14:430–435CrossRefGoogle Scholar
  7. 7.
    Li L, Guo YB, Wei XT, Li W (2013) Surface integrity characteristics in wire-EDM of Inconel 718 at different discharge energy. Procedia CIRP 6:220–225CrossRefGoogle Scholar
  8. 8.
    Klocke F, Welling D, Dieckmann J, Veselovac D, Perez R (2012) Developments in wire-EDM for the manufacturing of fir tree slots in turbine discs made of Inconel 718. Key Eng Mater 504–506:1177–1182CrossRefGoogle Scholar
  9. 9.
    Welling D (2014) Results of surface integrity and fatigue study of wire-EDM compared to broaching and grinding for demanding jet engine components made of Inconel 718. Procedia CIRP 13:339–344CrossRefGoogle Scholar
  10. 10.
    Klocke F, Welling D, Dieckmann J (2011) Comparison of grinding and wire EDM concerning fatigue strength and surface integrity of machined Ti6Al4V components. Procedia Eng 19:184–189CrossRefGoogle Scholar
  11. 11.
    Trauth D, Klocke F, Schongen F, Shirobokov A (2013a) Analyse und Modellierung der Schlagkraft beim elektro- dynamischen Festklopfen zur kraftbasierten Prozessauslegung. UTFScience III/2013,, 1-8
  12. 12.
    Klocke F, Trauth D, Schongen F, Terhorst M (2013a) Zeiteffiziente Prozessauslegung beim Festklopfen - Vorhersage des Randschichtzustandes mithilfe der Ähnlichkeitsmechanik. wt online, 10, DüsseldorfGoogle Scholar
  13. 13.
    Trauth D, Klocke F, Mattfeld P, Klink A (2013b) Time-efficient prediction of the surface layer state after deep rolling using similarity mechanics approach. Procedia CIRP 9C:29–34CrossRefGoogle Scholar
  14. 14.
    Field M, Kahles JF (1964) The surface integrity of machined and ground high strength steels. DMIC Report 210:54–77Google Scholar
  15. 15.
    Field M (1973) Surface integrity - a new requirement for improving reliability of Aerospace hardware. 18th Annual National SAMPE SymGoogle Scholar
  16. 16.
    Schmaltz G (1936) Technische Oberflächenkunde. SpringerGoogle Scholar
  17. 17.
    Czichos H (2008) Tribologie-Handbuch - Tribometrie, Tribomaterialien, Tribotechnik. SpringerGoogle Scholar
  18. 18.
    Lucca DA, Brinksmeier E, Goch G (1998) Progress in assessing surface integrity and subsurface integrity. CIRP Annals - Manuf Technol 47:669–693CrossRefGoogle Scholar
  19. 19.
    Jawahir IS, Brinksmeier E, M’Saoubi R, Aspiwall DK, Outeiro JC, Meyer D, Umbrello D, Jayal AD (2011) Surface integrity in material removal processes: recent advances. CIRP Ann Manuf Technol 60:603–626CrossRefGoogle Scholar
  20. 20.
    Novovic D, Dewes RC, Aspinwall DK, Voice W, Bowen P (2004) The effect of machined topography and integrity on fatigue life. Int J Mach Tools Manuf 44:125–134CrossRefGoogle Scholar
  21. 21.
    Klocke F, König W (2007) Fertigungsverfahren 3: Abtragen, Generieren und Lasermaterialbearbeitung, Auflage 4. SpringerGoogle Scholar
  22. 22.
    Zolotych BN (1957) Über die physikalischen Grundlagen der elektroerosiven Metallbearbeitung Bd. 1 Elektroerosive Bearbeitung von Metallen. Akademie der Wissenschaften der UdSSR, MoskauGoogle Scholar
  23. 23.
    Lazarenko BR (1974) Die Elektrofunkenbearbeitung von Metallen. Vestuik Maschinostroia 1:25–36Google Scholar
  24. 24.
    Soo SL, Antar MT, Aspinwall DK, Sage C, Cuttell M, Perez R, Winn AJ (2013) The effect of wire electrical discharge machining on the fatigue life of Ti-6Al-2Sn-4Zr-6Mo aerospace alloy. Procedia CIRP 6:215–219CrossRefGoogle Scholar
  25. 25.
    Antar MT, Soo SL, Aspinwall DK, Sage C, Cuttell M, Perez R, Winn AJ (2012) Fatigue response of Udimet 720 following minimum damage wire electrical discharge machining. Mater Des 42:295–300CrossRefGoogle Scholar
  26. 26.
    Mower TM (2014) Degradation of titanium 6Al4V fatigue strength due to electrical discharge machining. Int J Fatigue 64:84–96CrossRefGoogle Scholar
  27. 27.
    Lauwers B, Klocke F, Klink A, Tekkaya AE, Neugebauer R, Mcintoshe D (2014) Hybrid processes in manufacturing. CIRP Ann Manuf Technol 62(2):561–583CrossRefGoogle Scholar
  28. 28.
    Klocke F, Klink A, Veselovac D, Aspinwall DK, Soo SL, Schmidt M, Schilp J, Levy G, Kruth JP (2014) Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes. CIRP Ann Manuf Technol 62(2):703–726CrossRefGoogle Scholar
  29. 29.
    Steitz M, Scheil J, Müller C, Groche P (2013) Effect of process parameters on surface roughness in hammer peening and deep rolling. Key Eng Mater 1887:554–557Google Scholar
  30. 30.
    Bleicher F, Lechner C, Habersohn C, Kozeschnik E, Adjassoho B, Kaminiski H (2012) Mechanism of surface modification using machine hammer peening technology. CIRP Ann Manuf Technol 61(1):375–378CrossRefGoogle Scholar
  31. 31.
    Wied J (2011) Oberflächenbehandlung von Umformwerkzeugen durch Festklopfen. PhD-Thesis. University, DarmstadtGoogle Scholar
  32. 32.
    Lienert F, Hoffmeister J, Schulze V (2013) Residual Stress Depth Distribution after Piezo Peening of Quenched and Tempered AISI 4140 - Proceedings of ICSR 9. Mater Sci Forum:768–769Google Scholar
  33. 33.
    Mader S (2006) Festwalzen von Fan- und Verdichterschaufeln. PhD-Thesis. RWTH University, AachenGoogle Scholar
  34. 34.
    Klocke F, Trauth D, Terhorst M, Mattfeld P (2013b) Folienfreie Umformung von Edelstahlblechen mit durch Festklopfen strukturierten Werkzeugoberflächen. Proceedings of the 54. Tribologie-Fachtagung der Gesellschaft für Tribologie, GöttingenGoogle Scholar
  35. 35.
    Mueller C, Hinkelmann K, Waechter M, Masendorf R, Esderts A (2012) Re-use of failure-free tested specimens in stair case tests. MP Mater Test:786–709Google Scholar
  36. 36.
    Ransom JT, Mehl RF (1952) The statistical nature of fatigue properties of SAE 4340 steel forgings, ASTM-STP No. 137Google Scholar
  37. 37.
    Mehl RF (1961) Metallurgy and metallurgical engineering series. Mcgraw-Hill Book Company, p 448Google Scholar
  38. 38.
    Brown M-W, Miller K-J (1973) A theory of fatigue under multiaxial strain conditions. Prov Inst Mech Eng 187:745–755Google Scholar
  39. 39.
    Kandil F-A, Brown M-W, Miller K-J (1982) Biaxial low cycle fatigue fracture of 316 stainless steel at elevated temperatures. Book 280, The Metals Society, LondonGoogle Scholar
  40. 40.
    Bäumel A, Seeger T, Boller C (1990) Materials data for cyclic loading. Supplement 1. ElsevierGoogle Scholar
  41. 41.
    Kline S-J (1986) Similitude and approximation theory. Springer, New YorkCrossRefGoogle Scholar
  42. 42.
    Hergemöller R (1982) Anwendung der Ähnlichkeitstehorie auf Probleme der Umformtechnik. PhD thesis. RWTH University, AachenGoogle Scholar
  43. 43.
    Sedov L (1993) Similarity and dimensional methods in mechanics. CRC PressGoogle Scholar
  44. 44.
    Buckingham E (1914) On physically similar systems; illustrations of the use of dimensional equations. Phys Rev 4:345–376CrossRefGoogle Scholar
  45. 45.
    Tekkaya AE, Lange K (2000) An improved relationship between Vickers hardness and yield stress for cold formed materials and its experimental verification. CIRP Ann Manuf Technol 49(1):205–208CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2015

Authors and Affiliations

  1. 1.Research group forming technologies, WZL of RWTHAachen UniversityAachenGermany
  2. 2.Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen University and Fraunhofer Institute for Production EngineeringAachenGermany
  3. 3.Research group electro discharge machining, WZL of RWTH Aachen UniversityAachenGermany

Personalised recommendations