Skip to main content
Log in

Deep rolling of fine blanking punch edges

Numerical and experimental investigation of a novel deep rolling tool for filleting of cylindrical punches

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Fine blanking is an economical process to manufacture components with a high sheared edge quality. Fine blanking of high-strength steels leads to an increase of the wear of fine blanking punches and deteriorates the economical efficiency of this process. In preliminary work lateral surfaces of cylindrical punches made of different hardened steels industrially used for tool manufacturing were deep rolled. Under proper process parameters a reduction of surface roughness, a hardness increase as well as an induction of compressive residual stresses in the surface layer were achieved. Therefore, deep rolling has a potential to improve the wear resistance of fine blanking punches. In order to improve the quality of the sheared edge of a workpiece, fine blanking punches must have a round fillet on the cutting edge. Filleting through plastic deformation can improve the wear resistance of this most loaded region of the fine blanking punch. In order to perform the filleting of the cutting edge through plastic deformation and to induce strain hardening and compressive residual stresses into the edge region a novel profiled deep rolling tool is developed in this work. Furthermore, the technical feasibility of the edge deep rolling with regard to the processing of fine blanking punches is assessed for the first time. The approach is based on a numerical modeling and experimental investigation of edge deep rolling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Luo SY (1999) Effect of the geometry and the surface treatment of punching tools on the tool life and wear conditions in the piercing of thick steel plate. J Mater Proc Tech 88:122–133. doi:10.1016/S0924-0136(98)00375-6

    Article  Google Scholar 

  2. Sergejev F, Peetsalu P, Sivitski A, Saarna M, Adoberga E (2011) Surface fatigue and wear of PVD coated punches during fine blanking operation. Eng Fail Anal 18:1689–1697. doi:10.1016/j.engfailanal.2011.02.011

    Article  Google Scholar 

  3. Sonsino CM (2007) Light-weight design chances using high-strength steels. Mat-wiss u Werkstofftech 38:9–22. doi:10.1002/mawe.200600090

    Article  Google Scholar 

  4. Klocke F (2009) Manufacturing processes 4, forming. Springer, Berlin

    Book  MATH  Google Scholar 

  5. Klocke F, Sweeney K, Raedt HW (2001) Improved tool design for fine blanking through the application of numerical modeling techniques. J Mater Proc Tech 115:70–75. doi:10.1016/S0924-0136(01)00771-3

    Article  Google Scholar 

  6. Schulze V, Schwing JK (2006) Modern mechanical surface treatment. States, stability, effects. Wiley-VCH, Weinheim

    Google Scholar 

  7. Altenberger I (2005) Deep rolling-the past, the present and the future. In: Schulze V, Niku-Lari A (eds) Proceedings of 9th International Conference on Shot Peening ICSP-9, Paris, France

  8. Niku-Lari A (1987) Advances in surface treatments. Pergamon Press, Oxford

    Google Scholar 

  9. Meyer D, Kruse D, Bobe A, Goch G, Brinksmeier E (2010) Nondestructive characterization of the surface integrity of cold surface hardened components. Prod Eng Res Devel 5:443–449. doi:10.1007/s11740-010-0228-3

    Article  Google Scholar 

  10. Galzy F, Michaud H, Sprauel J M (2005) Approach of residual stress generated by deep rolling application to the reinforcement of the fatigue resistance of crankshafts. Mater Sci Forum 490-491:384–389. doi:10.4028/www.scientific.net/MSF.490-491.384

    Article  Google Scholar 

  11. Abrão AM, Denkena B, Breidenstein B, Mörke T (2014) Surface and subsurface alterations induced by deep rolling of hardened AISI 1060 steel. Prod Eng Res Devel 8:551–558. doi:10.1007/s11740-014-0539-x

    Article  Google Scholar 

  12. Klocke F, Shirobokov A, Mattfeld P, Feuerhack A (2014) Festwalzen von Feinschneidstempeln (in german) 10:660–665. wt-online

    Google Scholar 

  13. Hoffmann H (2012) Handbuch Umformen (in german) Hanser, Mnchen

  14. Picas I, Hernndez R, Casellas D, Valls I (2010) Strategies to increase the tool performance in punching operations of UHSS. In: Proceedings of IDDRG 2010 Graz, Austria, pp 325–334

  15. Röttger K (2003) Walzen hartgedrehter Oberflächen (in german). RWTH Aachen University, Dissertation

    Google Scholar 

  16. Mader S (2006) Festwalzen von Fan- und Verdichterschaufeln (in german). RWTH Aachen University, Dissertation

    Google Scholar 

  17. Manouchehrifar A, Alasvand K (2009) Finite element simulation of deep rolling and evaluate the influence of parameters on residual stress. In: Tsuomu K (ed) Recent Researches in Applied Mechanics. WSEAS Press, Athens, pp 121–127

    Google Scholar 

  18. Bäcker V, Klocke F, et al (2010) Analysis of the deep rolling process on turbine blades using the FEM/BEM-coupling. IOP Conf Ser: Mater Sci Eng 10:012134. doi:10.1088/1757-899X/10/1/012134

    Article  Google Scholar 

  19. Balland P, Tabourot L, Degre F, Moreau V (2013) An investigation of the mechanics of roller burnishing through finite element simulation and experiments. Int J Mach Tools Manuf 65:29–36. doi:10.1016/j.ijmachtools.2012.09.002

    Article  Google Scholar 

  20. Perenda J, Trajkovski J (2015) Residual stresses after deep rolling of a torsion bar made from high strength steel. J Mater Proc Tech 218:89–98. doi:10.1016/j.jmatprotec.2014.11.042

    Article  Google Scholar 

  21. Trauth D, Klocke F, Mattfeld P, Klink A (2013) Time-efficient prediction of the surface layer state after deep rolling using similarity mechanics approach. Procedia CIRP 9:29–34. doi:10.1016/j.procir.2013.06.163

    Article  Google Scholar 

  22. Jung DW, Yang DY (1998) Step-wise combined implicitexplicit finite-element simulation of autobody stamping processes. J Mater Proc Tech 83:245–260. doi:10.1016/S0924-0136(98)00059-4

    Article  Google Scholar 

  23. Noels L, Stainier L, Ponthot JP (2004) Combined implicit/explicit time-integration algorithms for the numerical simulation of sheet metal forming. J Comput Appl Math 168:331–339. doi:10.1016/j.cam.2003.12.004

    Article  MathSciNet  MATH  Google Scholar 

  24. Achmus C, Jung U, Kaiser B, Wohlfahrt H (1997) FEM-simulation des festwalzens von kurbelwellen (in german). Konstruktion 10:31–34

    Google Scholar 

  25. Systemes Dassault (2014) Abaqus Analysis User’s Guide: Prescribed Conditions, Constraints & Interaltions

Download references

Acknowledgments

The authors would like to thank the Federal Ministry for Economic Affairs and Energy within the Central Innovation Program SME Initiative (ZIM) for partly funding this research work. Further, we express our gratitude to the following industrial partners for their support: Karl Scharrenbroich GmbH & Co.KG, Ecoroll AG Werkzeugtechnik.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shirobokov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klocke, F., Shirobokov, A., Trauth, D. et al. Deep rolling of fine blanking punch edges. Int J Mater Form 9, 489–498 (2016). https://doi.org/10.1007/s12289-015-1235-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-015-1235-x

Keywords

Navigation