Advertisement

International Journal of Material Forming

, Volume 9, Issue 4, pp 489–498 | Cite as

Deep rolling of fine blanking punch edges

Numerical and experimental investigation of a novel deep rolling tool for filleting of cylindrical punches
  • F. Klocke
  • A. ShirobokovEmail author
  • D. Trauth
  • P. Mattfeld
Original Research

Abstract

Fine blanking is an economical process to manufacture components with a high sheared edge quality. Fine blanking of high-strength steels leads to an increase of the wear of fine blanking punches and deteriorates the economical efficiency of this process. In preliminary work lateral surfaces of cylindrical punches made of different hardened steels industrially used for tool manufacturing were deep rolled. Under proper process parameters a reduction of surface roughness, a hardness increase as well as an induction of compressive residual stresses in the surface layer were achieved. Therefore, deep rolling has a potential to improve the wear resistance of fine blanking punches. In order to improve the quality of the sheared edge of a workpiece, fine blanking punches must have a round fillet on the cutting edge. Filleting through plastic deformation can improve the wear resistance of this most loaded region of the fine blanking punch. In order to perform the filleting of the cutting edge through plastic deformation and to induce strain hardening and compressive residual stresses into the edge region a novel profiled deep rolling tool is developed in this work. Furthermore, the technical feasibility of the edge deep rolling with regard to the processing of fine blanking punches is assessed for the first time. The approach is based on a numerical modeling and experimental investigation of edge deep rolling.

Keywords

Mechanical surface treatment Deep rolling Fine blanking Finite element method 

Notes

Acknowledgments

The authors would like to thank the Federal Ministry for Economic Affairs and Energy within the Central Innovation Program SME Initiative (ZIM) for partly funding this research work. Further, we express our gratitude to the following industrial partners for their support: Karl Scharrenbroich GmbH & Co.KG, Ecoroll AG Werkzeugtechnik.

References

  1. 1.
    Luo SY (1999) Effect of the geometry and the surface treatment of punching tools on the tool life and wear conditions in the piercing of thick steel plate. J Mater Proc Tech 88:122–133. doi: 10.1016/S0924-0136(98)00375-6 CrossRefGoogle Scholar
  2. 2.
    Sergejev F, Peetsalu P, Sivitski A, Saarna M, Adoberga E (2011) Surface fatigue and wear of PVD coated punches during fine blanking operation. Eng Fail Anal 18:1689–1697. doi: 10.1016/j.engfailanal.2011.02.011 CrossRefGoogle Scholar
  3. 3.
    Sonsino CM (2007) Light-weight design chances using high-strength steels. Mat-wiss u Werkstofftech 38:9–22. doi: 10.1002/mawe.200600090 CrossRefGoogle Scholar
  4. 4.
    Klocke F (2009) Manufacturing processes 4, forming. Springer, BerlinCrossRefzbMATHGoogle Scholar
  5. 5.
    Klocke F, Sweeney K, Raedt HW (2001) Improved tool design for fine blanking through the application of numerical modeling techniques. J Mater Proc Tech 115:70–75. doi: 10.1016/S0924-0136(01)00771-3 CrossRefGoogle Scholar
  6. 6.
    Schulze V, Schwing JK (2006) Modern mechanical surface treatment. States, stability, effects. Wiley-VCH, WeinheimGoogle Scholar
  7. 7.
    Altenberger I (2005) Deep rolling-the past, the present and the future. In: Schulze V, Niku-Lari A (eds) Proceedings of 9th International Conference on Shot Peening ICSP-9, Paris, FranceGoogle Scholar
  8. 8.
    Niku-Lari A (1987) Advances in surface treatments. Pergamon Press, OxfordGoogle Scholar
  9. 9.
    Meyer D, Kruse D, Bobe A, Goch G, Brinksmeier E (2010) Nondestructive characterization of the surface integrity of cold surface hardened components. Prod Eng Res Devel 5:443–449. doi: 10.1007/s11740-010-0228-3 CrossRefGoogle Scholar
  10. 10.
    Galzy F, Michaud H, Sprauel J M (2005) Approach of residual stress generated by deep rolling application to the reinforcement of the fatigue resistance of crankshafts. Mater Sci Forum 490-491:384–389. doi: 10.4028/www.scientific.net/MSF.490-491.384 CrossRefGoogle Scholar
  11. 11.
    Abrão AM, Denkena B, Breidenstein B, Mörke T (2014) Surface and subsurface alterations induced by deep rolling of hardened AISI 1060 steel. Prod Eng Res Devel 8:551–558. doi: 10.1007/s11740-014-0539-x CrossRefGoogle Scholar
  12. 12.
    Klocke F, Shirobokov A, Mattfeld P, Feuerhack A (2014) Festwalzen von Feinschneidstempeln (in german) 10:660–665. wt-onlineGoogle Scholar
  13. 13.
    Hoffmann H (2012) Handbuch Umformen (in german) Hanser, MnchenGoogle Scholar
  14. 14.
    Picas I, Hernndez R, Casellas D, Valls I (2010) Strategies to increase the tool performance in punching operations of UHSS. In: Proceedings of IDDRG 2010 Graz, Austria, pp 325–334Google Scholar
  15. 15.
    Röttger K (2003) Walzen hartgedrehter Oberflächen (in german). RWTH Aachen University, DissertationGoogle Scholar
  16. 16.
    Mader S (2006) Festwalzen von Fan- und Verdichterschaufeln (in german). RWTH Aachen University, DissertationGoogle Scholar
  17. 17.
    Manouchehrifar A, Alasvand K (2009) Finite element simulation of deep rolling and evaluate the influence of parameters on residual stress. In: Tsuomu K (ed) Recent Researches in Applied Mechanics. WSEAS Press, Athens, pp 121–127Google Scholar
  18. 18.
    Bäcker V, Klocke F, et al (2010) Analysis of the deep rolling process on turbine blades using the FEM/BEM-coupling. IOP Conf Ser: Mater Sci Eng 10:012134. doi: 10.1088/1757-899X/10/1/012134 CrossRefGoogle Scholar
  19. 19.
    Balland P, Tabourot L, Degre F, Moreau V (2013) An investigation of the mechanics of roller burnishing through finite element simulation and experiments. Int J Mach Tools Manuf 65:29–36. doi: 10.1016/j.ijmachtools.2012.09.002 CrossRefGoogle Scholar
  20. 20.
    Perenda J, Trajkovski J (2015) Residual stresses after deep rolling of a torsion bar made from high strength steel. J Mater Proc Tech 218:89–98. doi: 10.1016/j.jmatprotec.2014.11.042 CrossRefGoogle Scholar
  21. 21.
    Trauth D, Klocke F, Mattfeld P, Klink A (2013) Time-efficient prediction of the surface layer state after deep rolling using similarity mechanics approach. Procedia CIRP 9:29–34. doi: 10.1016/j.procir.2013.06.163 CrossRefGoogle Scholar
  22. 22.
    Jung DW, Yang DY (1998) Step-wise combined implicitexplicit finite-element simulation of autobody stamping processes. J Mater Proc Tech 83:245–260. doi: 10.1016/S0924-0136(98)00059-4 CrossRefGoogle Scholar
  23. 23.
    Noels L, Stainier L, Ponthot JP (2004) Combined implicit/explicit time-integration algorithms for the numerical simulation of sheet metal forming. J Comput Appl Math 168:331–339. doi: 10.1016/j.cam.2003.12.004 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Achmus C, Jung U, Kaiser B, Wohlfahrt H (1997) FEM-simulation des festwalzens von kurbelwellen (in german). Konstruktion 10:31–34Google Scholar
  25. 25.
    Systemes Dassault (2014) Abaqus Analysis User’s Guide: Prescribed Conditions, Constraints & InteraltionsGoogle Scholar

Copyright information

© Springer-Verlag France 2015

Authors and Affiliations

  • F. Klocke
    • 1
  • A. Shirobokov
    • 1
    Email author
  • D. Trauth
    • 1
  • P. Mattfeld
    • 1
  1. 1.Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen UniversityAachenGermany

Personalised recommendations