Skip to main content
Log in

Towards accuracy improvement in single point incremental forming of shallow parts formed under laser assisted conditions

  • Thematic Issue: Flexible forming - Incremental Sheet Forming & Roll Forming
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Single point incrementally formed parts with a low wall angle geometry typically exhibit a manufactured geometry that significantly deviates from the design surface due to accumulated unwanted bulging deformation. Development of the bulge on the bottom of the part might result in wrinkling of the sheet at the bulged region which leads to higher forming forces and can even cease the forming process. In this study, the geometric inaccuracy of low angled parts is investigated by means of both Finite element analysis and an experimental campaign on a conical geometry. Deformation mechanisms in shallow sloped parts have been studied in detail and the tool-sheet contact area has been characterized both for low and high angled geometries. In a second phase, the laser assisted single point incremental forming process and its potential for improving accuracy are investigated. To obtain suitable process parameters for a warm forming condition, a transient heat transfer analysis is developed to simulate the laser movement on the conical geometry. Based on the simulated and experimentally determined tool-sheet contact zone, different laser spot positioning strategies have been used while the accuracy of the part and forming forces were measured. It has been observed that overforming of the cone wall is due to the continuous deformation of the sheet outside the contact zone which changes into underforming upon laser treatment. By selection of a proper laser positioning strategy a reduction of 42 % in bulge height is observed. This shows its effect in reducing radial forming forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Essa K, Hartley P (2011) An assessment of various process strategies for improving precision in single point incremental forming. Int J Mater Form 4(4):401–412. doi:10.1007/s12289-010-1004-9

    Article  Google Scholar 

  2. Mohammadi A, Vanhove H, Behera A, Van Bael A, Duflou J (2012) In-process hardening in laser supported incremental sheet metal forming. Key Eng Mater 504–506:827–8323

    Article  Google Scholar 

  3. Bambach M, Taleb Araghi B, Hirt G (2009) Strategies to improve the geometric accuracy in asymmetric single point incremental forming. Prod Eng 3(2):145–156. doi:10.1007/s11740-009-0150-8

    Article  Google Scholar 

  4. Mohammadi A, Vanhove H, Van Bael A, Duflou J (2014) The effect of laser radiation on the residual stress levels of Single Point Incrementally Formed (SPIF) parts In: 4th International Workshop on Thermal Forming and Welding Distortion (IWOTE), Bremen, Germany, 09–12 April: 83–92

  5. Malhotra R, Cao J, Ren F, Kiridena V, Cedric Xia Z, Reddy NV (2011) Improvement of geometric accuracy in incremental forming by using a squeezing toolpath strategy with two forming tools. J Manuf Sci Eng 133(6):061019. doi:10.1115/1.4005179

    Article  Google Scholar 

  6. Asgar J, Lingam R, Reddy VN et al (2013) Tool path influence on electric pulse aided deformation during incremental sheet metal forming. Am Inst Phys Conf Proc 1567(1):840–843. doi:10.1063/1.4850101

    Google Scholar 

  7. Verbert J, Behera A, Lauwers B, Duflou J (2011) Multivariate adaptive regression splines as a tool to improve the accuracy of parts produced by FSPIF. Key Eng Mater 473:841–846

    Article  Google Scholar 

  8. Hussain G, Gao L, Hayat N (2011) Forming parameters and forming defects in incremental forming of an aluminum sheet: correlation, empirical modeling, and optimization: part a. Mater Manuf Process 26(12):1546–1553. doi:10.1080/10426914.2011.552017

    Article  Google Scholar 

  9. Hussain G, Lin G, Hayat N (2011) Improving profile accuracy in SPIF process through statistical optimization of forming parameters. J Mech Sci Technol 25(1):177–182. doi:10.1007/s12206-010-1018-8

    Article  Google Scholar 

  10. Ambrogio G, Cozza V, Filice L, Micari F (2007) An analytical model for improving precision in single point incremental forming. J Mater Process Technol 191(1–3):92–95. doi:10.1016/j.jmatprotec.2007.03.079

    Article  Google Scholar 

  11. Micari F, Ambrogio G, Filice L (2007) Shape and dimensional accuracy in single point incremental forming: state of the art and future trends. J Mater Process Technol 191(1–3):390–395. doi:10.1016/j.jmatprotec.2007.03.066

    Article  Google Scholar 

  12. Ziran X, Gao L, Hussain G, Cui Z (2010) The performance of flat end and hemispherical end tools in single-point incremental forming. Int J Adv Manuf Technol 46(9–12):1113–1118. doi:10.1007/s00170-009-2179-4

    Article  Google Scholar 

  13. Duflou JR, Callebaut B, Verbert J, De Baerdemaeker H (2007) Laser assisted incremental forming: formability and accuracy improvement. CIRP Ann Manuf Technol 56(1):273–276. doi:10.1016/j.cirp.2007.05.063

    Article  Google Scholar 

  14. Fan G, Gao L, Hussain G, Wu Z (2008) Electric hot incremental forming: a novel technique. Int J Mach Tools Manuf 48:1688–1692

    Article  Google Scholar 

  15. Ambrogio G, Filice L, Gagliardi F (2012) Formability of lightweight alloys by hot incremental sheet forming. Mater Des 34(0):501–508. doi:10.1016/j.matdes.2011.08.024

    Article  Google Scholar 

  16. Galdos L, Argandoña ES, Ulacia I, Arruebarrena G (2012) Warm incremental forming of magnesium alloys using Hot fluid as heating media. Key Eng Mater 504–506:815–820

    Article  Google Scholar 

  17. Ji YH, Park JJ (2008) Incremental forming of free surface with magnesium alloy AZ31 sheet at warm temperatures. Trans Nonferrous Metals Soc China 18(Supplement 1):165–169. doi:10.1016/S1003-6326(10)60195-1

    Article  MathSciNet  Google Scholar 

  18. Ryen Ø, Holmedal B, Nijs O, Nes E, Sjölander E, Ekström H-E (2006) Strengthening mechanisms in solid solution aluminum alloys. Metal Mater Trans A 37(6):1999–2006. doi:10.1007/s11661-006-0142-7

    Article  Google Scholar 

  19. Li D, Ghosh A (2003) Tensile deformation behavior of aluminum alloys at warm forming temperatures. Mater Sci Eng A 352(1–2):279–286. doi:10.1016/S0921-5093(02)00915-2

    Article  Google Scholar 

  20. Toros S, Ozturk F, Kacar I (2008) Review of warm forming of aluminum–magnesium alloys. J Mater Process Technol 207(1–3):1–12. doi:10.1016/j.jmatprotec.2008.03.057

    Article  Google Scholar 

  21. Bambach M (2008) Process Strategies and Modelling Approaches for Asymmetric Incremental Sheet Forming. Dissertation, RWTH Aachen University

  22. Eyckens P (2010) Formability in Incremental Sheet Forming: Generalization of the Marciniak-Kuczynski Model. Dissertation, KU leuven

  23. Al-Ghamdi K, Hussain G (2014) The pillowing tendency of materials in single-point incremental forming: experimental and finite element analyses. Proc Inst Mech Eng B J Eng Manuf. doi:10.1177/0954405414530906

    Google Scholar 

  24. Eyckens P, Van Bael A, Aerens R, Duflou J, Van Houtte P (2008) Small-scale finite element modelling of the plastic deformation zone in the incremental forming process. Int J Mater Form 1(1):1159–1162. doi:10.1007/s12289-008-0186-x

    Article  Google Scholar 

  25. He S, Gu J, Sol H, Van Bael A, Van Houtte P, Tunckol Y, Duflou J (2007) Determination of strain in incremental sheet forming process. Key Eng Mater 344:503–510

    Article  Google Scholar 

  26. Flores P, Duchêne L, Bouffioux C, Lelotte T, Henrard C, Pernin N, Van Bael A, He S, Duflou J, Habraken AM (2007) Model identification and FE simulations: Effect of different yield loci and hardening laws in sheet forming. Int J Plast 23(3):420–449. doi:10.1016/j.ijplas.2006.05.006

    Article  MATH  Google Scholar 

  27. Henrard C, Bouffioux C, Eyckens P, Sol H, Duflou JR, Van Houtte P, Van Bael A, Duchêne L, Habraken AM (2011) Forming forces in single point incremental forming: prediction by finite element simulations, validation and sensitivity. Comput Mech 47(5):573–590. doi:10.1007/s00466-010-0563-4

    Article  MATH  Google Scholar 

  28. Aerens R, Eyckens P, Van Bael A, Duflou JR (2010) Force prediction for single point incremental forming deduced from experimental and FEM observations. Int J Adv Manuf Technol 46(9–12):969–982. doi:10.1007/s00170-009-2160-2

    Article  Google Scholar 

  29. Tebbe PA, Kridli GT (2004) Warm forming of aluminium alloys: an overview and future directions. Int J Mater Prod Technol 21:24–40

    Article  Google Scholar 

  30. Abedrabbo N, Pourboghrat F, Carsley J (2007) Forming of AA5182-O and AA5754-O at elevated temperatures using coupled thermo-mechanical finite element models. Int J Plast 23(5):841–875. doi:10.1016/j.ijplas.2006.10.005

    Article  MATH  Google Scholar 

  31. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol 54(2):88–114. doi:10.1016/S0007-8506(07)60021-3

    Article  Google Scholar 

  32. Safdar S, Li L, Sheikh MA (2004) Modelling the effects of laser beam geometry on laser surface treatment of metallic materials. In: Hinduja S (ed) Proceedings of the 34th International MATADOR Conference. Springer, London, pp 273–280. doi:10.1007/978-1-4471-0647-0_41

    Chapter  Google Scholar 

  33. Wiskel J. Barry (1984) Thermal analysis of the startup phase for D.C. casting of an AA5182 aluminum ingot. Dissertation, University of Alberta

  34. Vollertsen F (1996) Laserstrahlumformen, lasergestützte Formgebung: Verfahren, Mechanismen, Modellierung. Meisenbach, Bamberg

    Google Scholar 

  35. Callebaut B (2009) Sheet Metal Forming by Laser Forming and Laser Assisted Incremental Forming. Dissertation, KU leuven

  36. Bergman TL, Incropera FP (2011) Introduction to Heat Transfer. Wiley

  37. Li J, Kim S, Lee TM, Krajewski PE, Wang H, Hu SJ (2011) The effect of prestrain and subsequent annealing on the mechanical behavior of AA5182-O. Mater Sci Eng A 528(10–11):3905–3914. doi:10.1016/j.msea.2010.12.014

    Article  Google Scholar 

  38. Kaufman JG (2000) Introduction to Aluminum Alloys and Tempers. ASM International

  39. Mohammadi A, Vanhove H, Behera A, Van Bael A, Duflou J (2013) Enhanced formability of age-hardenable aluminium alloys by incremental forming of solution-treated blanks. Key Eng Mater 549:164–171

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO), the Europäische Forschungsgesellschaft Blechverarbeitung e.V. (EFB), the Arbeitsgenossenschaft industrieller Forschungsvereinigungen “Otto von Guericke” e.V. (AiF) and the Fraunhofer Institute for Machine Tools and Forming Technology IWU for performing the material characterization tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirahmad Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, A., Vanhove, H., Van Bael, A. et al. Towards accuracy improvement in single point incremental forming of shallow parts formed under laser assisted conditions. Int J Mater Form 9, 339–351 (2016). https://doi.org/10.1007/s12289-014-1203-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-014-1203-x

Keywords

Navigation