Abstract
The finite element method is the reference technique in the simulation of metal forming and provides excellent results with both Eulerian and Lagrangian implementations. The latter approach is more natural and direct but the large deformations involved in such processes require remeshing-rezoning algorithms that increase the computational times and reduce the quality of the results. Meshfree methods can better handle large deformations and have shown encouraging results. However, viscoplastic flows are nearly incompressible, which poses a challenge to meshfree methods. In this paper we propose a simple model of viscoplasticity, where both the pressure and velocity fields are discretized with maximum entropy approximants. The inf-sup condition is circumvented with a numerically consistent stabilized formulation that involves the gradient of the pressure. The performance of the method is studied in some benchmark problems including metal forming and orthogonal cutting.
This is a preview of subscription content, access via your institution.








References
- 1.
Kobayashi S, Oh Si, Altan T (1989) Metal forming and the finite-element method. Oxford University Press
- 2.
Peric D, Owen D R J (2004) Computational modeling of forming processes. Wiley
- 3.
Babuska I, Aziz AK (1976) On the angle condition in the finite element method. SIAM J Numer Anal 13(2):214–226
- 4.
Zienkiewicz O C, Godbole P N (1974) Flow of plastic and visco-plastic solids with special reference to extrusion and forming processes. Int J Numer Methods Eng 8(1):1–16
- 5.
Zienkiewicz O C (1984) Flow formulation for numerical solution of forming processes. Wiley, Chichester
- 6.
Hwu Y J, Lenard J G (1988) A finite element study of flat rolling. J Eng Mater Technol 110(1):22–27
- 7.
Belytschko T, Kennedy J M (1978) Computer models for subassembly simulation. Nucl Eng Des 49:17–38
- 8.
Liu W K, Herman C, Jiun-Shyan C, Ted B (1988) Arbitrary lagrangian-eulerian petrov-galerkin finite elements for nonlinear continua. Comput Methods Appl Mech Eng 68(3):259–310
- 9.
Yu-Kan H, Liu W K (1993) An ale hydrodynamic lubrication finite element method with application to strip rolling. Int J Numer Methods Eng 36(5):855–880
- 10.
Belytschko T, Krongauz Y, Organ D, Fleming M, Meshless P K (1996) An overview and recent developments. Comput Methods Appl Mech Eng 139:3–47
- 11.
Puso M A, Solberg J (2006) A stabilized nodally integrated tetrahedral. Int J Numer Methods Eng 67(6):841–867
- 12.
Quak W, Boogaard A H, González D , Cueto E (2011) A comparative study on the performance of meshless approximations and their integration. Comput Mech 48(2):121–137
- 13.
Krysl P, Kagey H (2012) Reformulation of nodally integrated continuum elements to attain insensitivity to distortion. Int J Numer Methods Eng 90(7):805–818
- 14.
Greco F, Filice L, Alfaro I, Cueto E (2011) On the performances of different nodal integration techniques and their stabilization. In: Proceedings Computational Plast XI - Fundamentals and Application Conference, pp 1455–1466
- 15.
Greco F, Umbrello D, Di Renzo S, Filice L, Alfaro I, Cueto E (2011) Application of the nodal integrated finite element method to cutting, A preliminary comparison with the traditional fem approach. Adv Mater Res 223:172–181
- 16.
Quak W (October 2011) On meshless and nodal-based numerical methods for forming processes, PhD thesis. Enschede, The Netherlands
- 17.
Belytschko T, Lu Y Y, Gu L (1994) Element-free galerkin methods. Int J Numer Methods Eng 37(2):229–256
- 18.
Liu W K, Jun S, Yi F Z (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8-9):1081–1106
- 19.
Huerta A, Fernández-Méndez S (2000) Enrichment and coupling of the finite element and meshless methods. Int J Numer Methods Eng 48:1615–1636
- 20.
Sukumar N, Moran B, Belytschko T (1998) The natural element method in solid mechanics. Int J Numer Methods Eng 43(5):839–887
- 21.
Preparata FP, Shamos M I (1985) Computational geometry: an introduction. Springer, New York
- 22.
Cueto E, Doblaré M, Gracia L (2000) Imposing essential boundary conditions in the natural element method by means of density-scaled ?-shapes. Int J Numer Methods Eng 49(4):519–546
- 23.
Alfaro I, Yvonnet J, Chinesta F, Cueto E (2007) A study on the performance of natural neighbour-based galerkin methods. Int J Numer Methods Eng 71(12):1436–1465
- 24.
Sukumar N (2004) Construction of polygonal interpolants: a maximum entropy approach. Int J Numer Methods Eng 61(12):2159–2181
- 25.
Arroyo M, Ortiz M (2006) Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int J Numer Methods Eng 65(13):2167–2202
- 26.
Rosolen A, Millán D, Arroyo M (2010) On the optimum support size in meshfree methods: a variational adaptivity approach with maximum entropy approximants. Int J Numer Methods Eng 82(7):868–895
- 27.
Rosolen A, Arroyo M (2013) Blending isogeometric analysis and local maximum entropy meshfree approximants. Comput Methods Appl Mech Eng 264:95–107
- 28.
Millán D, Rosolen A, Arroyo M (2011) Thin shell analysis from scattered points with maximum-entropy approximants. Int J Numer Methods Eng 85(6):723–751
- 29.
Millán D, Rosolen A, Arroyo M (2013) Nonlinear manifold learning for meshfree finite deformation thin shell analysis. Int J Numer Methods Eng 93:685–713
- 30.
Millán D, Arroyo M (2013) Nonlinear manifold learning for model reduction in finite elastodynamics. Comput Methods Appl Mech Eng 261262(0):118–131
- 31.
Millán D, Arroyo M, Hashemian B (2013) B. Biasing molecular dynamics simulations with smooth and nonlinear data-driven collective variables. Submitted to Journal of Chemical Physics
- 32.
Arroyo P A I, M Abdollahi A (2013) Effect of flexoelectricity on the electromechanical response of nano cantilever beams. Submitted to Journal of Computational Physics
- 33.
Rosolen A, Peco C, Arroyo M (2013) An adaptive meshfree method for phase-field models of biomembranes Part I: approximation with maximum-entropy basis functions. J Comput Phys 249(0):303–319
- 34.
Peco C, Rosolen A, Arroyo M (2013) An adaptive meshfree method for phase-field models of biomembranes Part II: a lagrangian approach for membranes in viscous fluids. Chin J Comput Phys 249(0):320–336
- 35.
Rabczuk M D, Arroyo T M, Amiri F (2013) Phase-field modeling of fracture mechanics in linear thin shells. J Appl Math
- 36.
Quaranta G, Kunnath S K, Sukumar N (2012) Maximum-entropy meshfree method for nonlinear static analysis of planar reinforced concrete structures. Eng Struct 42:179–189
- 37.
Cyron CJ, Nissen K, Gravemeier V, Wall WA (2010) Stable meshfree methods in fluid mechanics based on greens functions. Comput Mech 46(2):287–300
- 38.
Bonet J, Kulasegaram S (2000) Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int J Numer Methods Eng 47(6):1189–1214
- 39.
Guo Y M, Nakanishi K (2003) A backward extrusion analysis by the rigidplastic integrallessmeshless method. J Mater Process Technol 13(140):19–24. Proceedings of the 6th Asia Pacific Conference on materials Processing
- 40.
Wen H, Dong X, Yan C, Ruan X (2007) Three dimension profile extrusion simulation using meshfree method. Int J Adv Manuf Tech 34(3-4):270–276
- 41.
Wu C T , Chen JS, Pan C, Roque C (1998) A lagrangian reproducing kernel particle method for metal forming analysis. Comput Mech, 289
- 42.
Chen J S, Roque CMOL, Chunhui P, Button S T (1998) Analysis of metal forming process based on meshless method. J Mater Process Technol, 642–646
- 43.
Yoon S, Chen J S (2002) Accelerated meshfree method for metal forming simulation. Finite Elem Anal Des 38(10):937–948
- 44.
Alfaro I, Yvonnet J, Cueto E, Chinesta F, Doblaré M (2006) Meshless methods with application to metal forming. Comput Methods Appl Mech Eng 195(489):6661–6675
- 45.
Alfaro I, González D, Bel D, Cueto E, Doblar M, Chinesta F (2006) advances in the meshless simulation of aluminium extrusion and other related forming processes. Archives Comput Methods Eng 13(1):3–43
- 46.
Alfaro I, Bel D, Cueto E, Doblaré M, Chinesta F (2006) Three-dimensional simulation of aluminium extrusion by the -shape based natural element method. Comput Methods Appl Mech Eng 195(33-36):4269–4286
- 47.
Alfaro I, Gagliardi F, Olivera J, Cueto E, Filice L, Chinesta F (2009) Simulation of the extrusion of hollow profiles by natural element methods. Int J Mater Form 2(Supplement 1):597–600
- 48.
Cueto E, Chinesta F (2013) Meshless methods for the simulation of material forming. Int J Mater Form, 1–19
- 49.
Quak W, Gonzalez D, Cueto E, van den Boogaard A H (2009) On the use of local max-ent shape functions for the simulation of forming processes. In: Onate E, Owen D R J (eds) X International Conference on Computational Plasticity, COMPLAS X. CIMNE, Barcelona, Spain
- 50.
Chenot J L, Bellet M (1992) Numerical Modelling of Material Deformation Processes. In: Hartley P, Pillinger I, Sturgess C (eds). Springer, London, pp 179–224
- 51.
Dolbow J, Belytschko T (1999) Volumetric locking in the element free Galerkin method. Int J Numer Methods Eng 46(6):925–942
- 52.
González D, Cueto E, Doblaré M (2004) Volumetric locking in natural neighbour Galerkin methods. Int J Numer Methods Eng 61(4):611–632
- 53.
Brezzi F (1974) On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. ESAIM: Math Model Numer Anal Modél Math Anal Numér 8(R2):129–151
- 54.
Babuka I (1973) The finite element method with lagrangian multipliers. Numerische Mathematik 20(3):179–192
- 55.
Li J, He Y, Chen Z (2009) Performance of several stabilized finite element methods for the stokes equations based on the lowest equal-order pairs. Computing 86(1):37–51
- 56.
Ortiz A, Puso M A, Sukumar N (2010) Maximum-entropy meshfree method for compressible and near-incompressible elasticity. Comput Methods Appl Mech Eng 199(25–28):1859–1871
- 57.
Arnold D N, Brezzi F, Fortin M (1984) A stable finite element for the stokes equations. CALCOLO 21(4):337–344
- 58.
Ortiz A, Puso MA, Sukumar N (2011) Maximum-entropy meshfree method for incompressible media problems. Finite Elem Anal Des 47(6):572–585
- 59.
Cyron CJ, Arroyo M, Ortiz M (2009) Smooth, second order, non-negative meshfree approximants selected by maximum entropy. Int J Numer Methods Eng 79(13):1605–1632
- 60.
Rosolen A, Millán D, Arroyo M (2012) Second order convex maximum entropy approximants with applications to high order PDE. Int J Numer Methods Eng
- 61.
González D, Cueto E, Doblaré M (2010) A higher-order method based on local maximum entropy approximation. Int J Numer Methods Eng 83(6):741–764
- 62.
Bompadre A, Perotti L E, Cyron C, Ortiz M (2012) Convergent meshfree approximation schemes of arbitrary order and smoothness. Comput Methods Appl Mech Eng 221–222:83–103
- 63.
Puso M A, Chen J S, Zywicz E, Elmer W (2008) Meshfree and finite element nodal integration methods. Int J Numer Methods Eng 74(3):416–446
- 64.
Codina R (1998) Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput Methods Appl Mech Eng 156(14s):185–210
- 65.
Barth T, Bochev P, Gunzburger M, Shadid J (2004) A taxonomy of consistently stabilized finite element methods for the stokes problem. SIAM J Sci Comput 25(5):1585–1607
- 66.
Bochev P, Gunzburger M (2004) An absolutely stable pressure-poisson stabilized finite element method for the stokes equations. SIAM J Numer Anal 42(3):1189–1207
- 67.
Peco C, Rosolen A, Arroyo M (2013) Estabilización de las ecuaciones de stokes con aproximantes locales de máxima entropía. Submitted to RIMNI
- 68.
Brezzi F, Pitkaranta J (1984) On the stabilization of finite element approximations of the Stokes equations. Notes on Numerical Fluid Mechanics, Efficient Solutions of Elliptic Systems, vol 10. Viewig, Braunschweig, pp 11–19
- 69.
Greco F, Sukumar N (2013) Derivatives of maximum-entropy basis functions on the boundary: theory and computations. Int J Numer Methods Eng 94(12):1123–1149
- 70.
Hughes T J R, Franca L P, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. circumventing the babuka-brezzi condition: a stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59(1):85–99
- 71.
Jansen K E, Collis S S, Whiting C, Shakib F (1999) A better consistency for low-order stabilized finite element methods. Comput Methods Appl Mech Eng 174(1-2):153–170
- 72.
Harari I, Hughes T J R (1992) What are C and h?: Inequalities for the analysis and design of finite element methods. Comput Methods Appl Mech Eng 97(2):157–192
- 73.
Wriggers P (2003) Computational contact mechanics. Comput Mech 32:141–141
- 74.
Hormann K, Sukumar N (2008) Maximum entropy coordinates for arbitrary polytopes. In: Proceedings of SGP 2008
- 75.
Edelsbrunner H, Kirkpatrick D, Seidel R (1983) On the shape of a set of points in the plane. IEEE Trans Inform Theory 29(4):551–559
- 76.
Kalpakjian S (1992) Manufacturing Processes for Engineering Materials, 5/e (New Edition). Pearson Education
- 77.
Quak W., Boogaard A.H., Hutink J (2009) Meshless methods and forming processes. Int J Mater Form 2(1):585–588
- 78.
Ceretti E, Taupin E, Altan T (1997) Simulation of metal flow and fracture applications in orthogonal cutting, blanking, and cold extrusion. CIRP Ann-Manuf Technol 46(1):187–190
- 79.
Arrazola P J, zel T, Umbrello D, Davies M, Jawahir I S (2013) Recent advances in modelling of metal machining processes. CIRP Ann-Manuf Technol 62(2):695–718
Acknowledgments
Francesco Greco acknowledges the travel research fellowship awarded by the Fondo Sociale Europeo. Marino Arroyo and Christian Peco acknowledge the support of the European Research Council under the European Community’s 7th Framework Programme (FP7/2007-2013)/ERC grant agreement nr 240487, and of the Ministerio de Ciencia e Innovacion (DPI2011-26589). MA acknowledges the support received through the prize “ICREA Academia” for excellence in research, funded by the Generalitat de Catalunya. CP acknowledges FPI-UPC Grant and FPU Ph.D. Grant (Ministry of Science and Innovation, Spain).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Greco, F., Filice, L., Peco, C. et al. A stabilized formulation with maximum entropy meshfree approximants for viscoplastic flow simulation in metal forming. Int J Mater Form 8, 341–353 (2015). https://doi.org/10.1007/s12289-014-1167-x
Received:
Accepted:
Published:
Issue Date:
Keywords
- Maximum entropy
- Metal forming
- Viscoplasticity
- Stabilization