Skip to main content
Log in

Economic production of load-bearing sheet metal parts with printed strain gages by combining forming and screen printing

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

This paper demonstrates the feasibilty of combining forming and screen printing for the production of load-bearing sheet metal parts, which are able to measure strains. Therefore, two layers were printed on sheet metals prior to the forming process: a nonconductive layer as insulation and strain gages based on conductive silver ink or conductive carbon ink. Subsequent to the screen printing process, the sheets were formed in U-O-bending experiments in order to produce tube sections with electrical functionality. During the forming process, the printed strain gages were subjected to mechanical loads caused by the deformation of the material and surface stresses due to tool contact. After the forming experiments, the printed tube sections were tested in a tension and compression testing machine to prove their functionality. Although the printed strain gages were not as accurate as conventional metallic strain gages, they are significantly cheaper and sufficiently accurate for many applications with low to medium precision requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Department for Business, Innovation & Skills (BIS), UK Government (2009) Plastic electronics: a UK strategy for success. <http://www.bis.gov.uk/files/file53890.pdf>. Accessed 6 June 2013

  2. Halonen E, Pynttäri V, Lilja J, Sillanpää H, Mäntysalo M, Heikkinen J, Mäkinen R, Kaija T, Salonen P (2011) Environmental protection of inkjet-printed Ag conductors. Microelectron Eng 88(9):2970–2976. doi:10.1016/j.mee.2011.04.038

    Article  Google Scholar 

  3. Varela F, Armendáriz E, Wolluschek C (2011) Inkjet printed electronics: the wet on wet approach. Chem Eng Process Process Intensif 50(5–6):589–591. doi:10.1016/j.cep.2011.02.001

    Article  Google Scholar 

  4. Kang BJ, Lee CK, Oh JH (2012) All-inkjet-printed electrical components and circuit fabrication on a plastic substrate. Microelectron Eng 97:251–254. doi:10.1016/j.mee.2012.03.032

    Article  Google Scholar 

  5. Kwang-Seok Kim, Kwang-Ho Jung, Seung-Boo Jung (2013) Design and fabrication of screen-printed silver circuits for stretchable electronics. Microelectronic Engineering, Available online 13 July 2013, http://dx.doi.org/10.1016/j.mee.2013.07.003

  6. Kim K-S, Bang J-O, Jung S-B (2013) Electrochemical migration behavior of silver nanopaste screen-printed for flexible and printable electronics. Curr Appl Phys 13(Supplement 2):S190–S194. doi:10.1016/j.cap.2013.01.031

    Article  Google Scholar 

  7. de la Fuente Vornbrock A, Sung D, Kang H, Kitsomboonloha R, Subramanian V (2010) Fully gravure and ink-jet printed high speed pBTTT organic thin film transistors. Org Electron 11(12):2037–2044. doi:10.1016/j.orgel.2010.09.003

    Article  Google Scholar 

  8. Allen M, Lee C, Ahn B, Kololuoma T, Shin K, Ko S (2011) R2R gravure and inkjet printed RF resonant tag. Microelectron Eng 88(11):3293–3299. doi:10.1016/j.mee.2011.08.010

    Article  Google Scholar 

  9. Hübler AC, Bellmann M, Schmidt GC, Zimmermann S, Gerlach A, Haentjes C (2012) Fully mass printed loudspeakers on paper. Org Electron 13(11):2290–2295. doi:10.1016/j.orgel.2012.06.048

    Article  Google Scholar 

  10. Weremczuk J, Tarapata G, Jachowicz R (2012) Humidity sensor printed on textile with use of ink-jet technology. Procedia Eng 47:1366–1369. doi:10.1016/j.proeng.2012.09.410

    Article  Google Scholar 

  11. Virkki J, Björninen T, Kellomäki T, Merilampi S, Shafiq I, Ukkonen L, Sydänheimo L, Chan YC (2013) Reliability of washable wearable screen printed UHF RFID tags. Microelectronics Reliability, Available online 26 December 2013, http://dx.doi.org/10.1016/j.microrel.2013.12.011

  12. Groche P, Türk M (2011) Smart structures assembly through incremental forming. CIRP Ann Manuf Technol 60(1):21–24. doi:10.1016/j.cirp.2011.03.003

    Article  Google Scholar 

  13. Brenneis M, Groche P (2012) Smart components through rotary swaging. Key Eng Mater 504–506:723–728. doi:10.4028/www.scientific.net/KEM.504-506.723

    Article  Google Scholar 

  14. Schikorra M, Tekkaya AE, Kleiner M (2008) Experimental investigation of embedding high strength reinforcements in extrusion profiles. CIRP Ann Manuf Technol 57(1):313–316. doi:10.1016/j.cirp.2008.03.024

    Article  Google Scholar 

  15. Tekkaya AE, Baier H, Biermann D, Fleischer J, Schulze V, Zäh MF, Pietzka D (2010) Integration von Umformen, Urformen, Trennen und Fügen für die Fertigung von leichten Tragwerkstrukturen, Ergebnisbericht der Phase II, 1. Januar 2007 bis 31. Dezember 2010. In: Fortschritt-Berichte VDI, Reihe 2, Fertigungstechnik, Nr. 678, VDI Verlag, pp 27–48

  16. Müller R, Reichert J, Thoms V (2003) Anwendung von Schichtverbundblechen für Leichtbaukonzepte, Verlag und Vertriebsgesellschaft mbH Düsseldorf

  17. Ibis M, Griesheimer S, Salun L, Rausch J, Groche P (2011) Sheet metal hydroforming of functional composite structures, SPIE smart structures/NDE. Active and Passive Smart Structures and Integrated Systems, San Diego, US Proceedings of SPIE, doi:10.1117/12.880934

  18. Drossel WG, Hensel S, Kranz B, Nestler M, Goeschel A (2009) Sheet metal forming of piezoceramic–metal-laminar structures—simulation and experimental analysis. CIRP Ann Manuf Technol 58(1):279–282. doi:10.1016/j.cirp.2009.03.058

    Article  Google Scholar 

  19. Kim HY, Hwang BC, Bae WB (2002) An experimental study on forming characteristics of pre-coated sheet metals. J Mater Process Technol 120(1–3):290–295. doi:10.1016/S0924-0136(01)01088-3

    Article  Google Scholar 

  20. Vayeda R, Wang J (2007) Adhesion of coatings to sheet metal under plastic deformation. Int J Adhes Adhes 27(6):480–492. doi:10.1016/j.ijadhadh.2006.08.003

    Article  Google Scholar 

  21. Griesheimer S, Salun L, Dörsam E, Götz P, Ibis M, Rausch J (2010) Forming limit curves of flexible sensors on metal surfaces. In: Large-area, Organic & Printed Electronics Convention (LOPE-C)

  22. Salun L, Griesheimer S, Götz P, Ibis M, Rausch J (2010) Mechanical and electrical stability of printed layers against mechanical deformation. In: Large-area, Organic & Printed Electronics Convention (LOPE-C)

  23. Deutscher Kalibrierdienst DKD, Guidline DKD-R 3-3 (2013) Calibration of Force Measuring Devices (title translated). <http://www.dkd.eu/dokumente/Richtlinien/dkd_r_3_3.pdf>. Accessed 15 July 2013

  24. GOM - Gesellschaft für Optische Messtechnik mbH, Industrial 3D Measurement Techniques (2014) 3D Software, ARGUS Software. <http://www.gom.com/3d-software/argus-software.html>. Accessed 8 January 2014

Download references

Acknowledgments

Parts of the present and still ongoing research in this field are funded by the German federal state of Hesse (project “LOEWE-Zentrum AdRIA: Adaptronik – Research, Innovation, Application”, grant number III L 4 - 518/14.004 (2008)). This financial support is gratefully acknowledged.

Further, the authors would like to thank E. Dörsam, head of the Institute of Printing Science and Technology, and A. Lyaschenko, scientific staff of the Institute of Printing Science and Technology, for kindly providing the screen printing machine, the technical advice and the support during the printing experiments as a part of the project “LOEWE-Zentrum AdRIA: Adaptronik – Research, Innovation, Application”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Groche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groche, P., Ibis, M., Hatzfeld, C. et al. Economic production of load-bearing sheet metal parts with printed strain gages by combining forming and screen printing. Int J Mater Form 8, 269–282 (2015). https://doi.org/10.1007/s12289-014-1165-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-014-1165-z

Keywords

Navigation