Advertisement

International Journal of Material Forming

, Volume 7, Issue 4, pp 469–477 | Cite as

An investigation into thickness distribution in single point incremental forming using sequential limit analysis

  • M. J. Mirnia
  • B. Mollaei DarianiEmail author
  • H. Vanhove
  • J. R. Duflou
Original Research

Abstract

Single point incremental forming (SPIF), needing no dedicated tools, is the simplest variant of incremental sheet metal forming processes. In the present work, a simplified model of SPIF of a truncated cone, capable of predicting the thickness distribution, has been developed using sequential limit analysis (SLA). The obtained results were validated experimentally and compared with thickness predictions obtained from an explicit shell FE model implemented in Abaqus. It is shown that SLA is capable to solve the thickness prediction problem more accurately and efficiently than the equivalent FEA approach. As an application of the proposed model, the effect of the diameter of the hemispherical tool tip and the step down on the thickness distribution and the minimum thickness in a 50° cone is studied using SLA. By introducing bending and stretching zones in the wall of the cone, variations of the minimum thickness by changing the tool diameter and the step down are discussed.

Keywords

Single point incremental forming (SPIF) Sequential limit analysis Thickness Second-order cone programming (SOCP) 

References

  1. 1.
    Robert C, Ben Ayed L, Delamézière A, Dal Santo P, Batoz JL (2010) Development of A Simplified Approach of Contact For Incremental Sheet Forming. Int J Mater Form 3(suppl 1):987–990CrossRefGoogle Scholar
  2. 2.
    Robert C, Ben Ayed L, Delamézière A, Dal Santo P, Batoz JL (2009) On a Simplified Model for the Tool and the Sheet Contact Conditions for the SPIF Process Simulation. Key Eng Mater 410–411:373–379CrossRefGoogle Scholar
  3. 3.
    Bambach M (2010) A geometrical model of the kinematics of incremental sheet forming for the prediction of membrane strains and sheet thickness. J Mater Process Technol 210:1562–1573CrossRefGoogle Scholar
  4. 4.
    Hadoush A, van den Boogaard AH (2012) Efficient implicit simulation of incremental sheet forming. Int J Numer Methods Eng 90:597–612CrossRefzbMATHGoogle Scholar
  5. 5.
    Raithatha A, Duncan SR (2009) Rigid plastic model of incremental sheet deformation using second-order cone programming. Int J Numer Methods Eng 78:955–979CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Hwan CL (1997) An upper bound finite element procedure for solving large plane strain deformation. Int J Numer Methods Eng 40:1909–1922CrossRefGoogle Scholar
  7. 7.
    Hwan CL (1997) Plane strain extrusion by sequential limit analysis. Int J Mech Sci 39:807–817CrossRefzbMATHGoogle Scholar
  8. 8.
    Huh H, Kim KP, Kim HS (2001) Collapse simulation of tubular structures using a finite element limit analysis approach and shell elements. Int J Mech Sci 43:2171–2187CrossRefzbMATHGoogle Scholar
  9. 9.
    Corradi L, Panzeri N (2004) A triangular finite element for sequential limit analysis of shells. Adv Eng Softw 35:633–643CrossRefzbMATHGoogle Scholar
  10. 10.
    Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric Single Point Incremental Forming of Sheet Metal. CIRP Ann 54:88–114CrossRefGoogle Scholar
  11. 11.
    Echrif SBM, Hrairi M (2011) Research and Progress in Incremental Sheet Forming Processes. Mater Manuf Processes 26:1404–1414CrossRefGoogle Scholar
  12. 12.
    Fei H, Jian-hua M (2008) Numerical simulation and experimental investigation of incremental sheet forming process. J Cent S Univ Technol 15:581–587CrossRefGoogle Scholar
  13. 13.
    Manco GL, Ambrogio G (2010) Influence of thickness on formability in 6082-T6. Int J Mater Form 3(suppl 1):983–986CrossRefGoogle Scholar
  14. 14.
    Li J, Li C, Zhou T (2012) Thickness distribution and mechanical property of sheet metal incremental forming based on numerical simulation. Trans Nonferrous Metals Soc China 22:s54–s60CrossRefGoogle Scholar
  15. 15.
    Jhonson W, Mellor PB (1983) Engineering plasticity. Ellis Horwood, UKGoogle Scholar
  16. 16.
    Mirnia MJ, Mollaei Dariani B (2012) Analysis of incremental sheet metal forming using the upper-bound approach. Proc Inst Mech Eng B: J Eng Manuf 226:1309–1320CrossRefGoogle Scholar
  17. 17.
    Abrinia A, Ghorbani M (2012) Theoretical and Experimental Analyses for the Forward Extrusion of Nonsymmetric Sections. Mater Manuf Processes 27:420–429CrossRefGoogle Scholar
  18. 18.
    Long YQ, Cen S, Long ZF (2009) Advanced finite element method in structural engineering. Springer, BerlinCrossRefzbMATHGoogle Scholar
  19. 19.
    MOSEK ApS (2012) The MOSEK optimization toolbox for Matlab manual, Version 6.0 (Revision 135). MOSEK ApS, DenmarkGoogle Scholar
  20. 20.
    Makrodimopoulos A, Martin CM (2007) Upper bound limit analysis using simplex strain elements and second-order cone programming. Int J Numer Anal MethodsGeomech 31:835–865CrossRefzbMATHGoogle Scholar
  21. 21.
    Le CV, Nguyen-Xuan H, Nguyen-Dang H (2010) Upper and lower bound limit analysis of plates using FEM and second-order cone programming. Comput Struct 88:65–73CrossRefGoogle Scholar
  22. 22.
    Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  23. 23.
    Ma LW, Mo JH (2008) Three-dimensional finite element method simulation of sheet metal single-point incremental forming and the deformation pattern analysis. Proc Inst Mech Eng B: J Eng Manuf 222:373–380CrossRefGoogle Scholar
  24. 24.
    Eyckens P, Belkassem B, Henrard C, Gu J, Sol H, Habraken AM, Duflou JR, Van Bael A, Van Houtte P (2011) Strain evolution in the single point incremental forming process: digital image correlation measurement and finite element prediction. Int J Mater Form 4:55–71CrossRefGoogle Scholar
  25. 25.
    Duflou J, Tunckol Y, Szekeres A, Vanherck P (2007) Experimental study on force measurements for single point incremental forming. J Mater Process Technol 189:65–72CrossRefGoogle Scholar
  26. 26.
    Bambach M (2008) Process strategies and modeling approaches for asymmetric incremental sheet forming. Umformtechnische Schriften Band 139. Shaker Verlag, AachenGoogle Scholar

Copyright information

© Springer-Verlag France 2013

Authors and Affiliations

  • M. J. Mirnia
    • 1
  • B. Mollaei Dariani
    • 1
    Email author
  • H. Vanhove
    • 2
  • J. R. Duflou
    • 2
  1. 1.Department of Mechanical EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.Department of Mechanical EngineeringKU LeuvenLeuvenBelgium

Personalised recommendations