Skip to main content
Log in

Assessment on the performance of distinct stress integration algorithms for complex non-quadratic anisotropic yield criteria

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

In this work, three distinct return mapping algorithms are presented and analyzed in detail: (i) a semi-explicit algorithm that accounts for the sub-incrementation technique, which reduces to (ii) a fully-explicit algorithm and, finally, (iii) a semi-implicit algorithm,. In order to describe the complex anisotropic behaviour of some metals, such as aluminium alloys, two non-quadratic anisotropic yield criteria were implemented: the Yld91 and Yld2004-18p. The performance of the developed algorithms is inferred in a series of sheet metal forming benchmarks and the quality of the results is assessed when compared to experimental results presented in the literature. The numerical simulations show that the semi-implicit algorithm is quite efficient with the von Mises yield criterion. However, when anisotropy is taken into account, the algorithm requires several iterations to return the stresses to the yield surface, particularly when the stresses are located at corner regions of that surface. The semi-explicit algorithm proved to be the most robust and efficient algorithm with anisotropic yield criteria. The good agreement between the experimental data and the obtained numerical results demonstrate the high efficiency of the presented algorithms and the ability of the anisotropic criteria to predict the material’s complex anisotropic behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Math Phys Sci 193:281–297

    Article  MATH  Google Scholar 

  2. von Mises RV (1913) Mechanik der fasten korper in plastisch deformablen zustand. Gottinger Nachrichten, Germany, pp 582–592

  3. Mellor PB, Parmer A (1978) Plasticity of sheet metal forming. In: Koistinen DP, Wang NM (eds) Mechanics of sheet metal forming. Plenum Press, New York, pp 55–74

    Google Scholar 

  4. Hill R (1979) Theoretical plasticity of textured aggregates. Math Proc Camb Soc 85:179–191

    Article  MATH  Google Scholar 

  5. Hill R (1990) Constitutive modelling of orthotropic plasticity in sheet metals. J Mech Phys Solids 38:405–417

    Article  MATH  MathSciNet  Google Scholar 

  6. Hill R (1993) A user-friendly theory of orthotropic plasticity in sheet metals. Int J Mech Sci 35:19–25

    Article  MATH  Google Scholar 

  7. Barlat F, Lege DJ, Brem JC (1991) A six-component yield function for anisotropic materials. Int J Plast 7:693–712

    Article  Google Scholar 

  8. Karafillis AP, Boyce MC (1993) A general anisotropic yield criterion using bounds and a transformation weighting tensor. J Mech Phys Solids 41:1859–1886

    Article  MATH  Google Scholar 

  9. Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Lege DJ, Pourboghrat F, Choi SH, Chu E (2003) Plane stress yield function for aluminum alloy sheets. Part 1: theory. Int J Plast 19:1297–1319

    Article  MATH  Google Scholar 

  10. Barlat F, Aretz H, Yoon JW, Karabin ME, Brem JC, Dick RE (2005) Linear transformation-based anisotropic yield functions. Int J Plast 21:1009–1039

    Article  MATH  Google Scholar 

  11. Yoon JW, Barlat F, Dick RE, Karabin ME (2006) Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function. Int J Plast 22:174–193

    Article  MATH  Google Scholar 

  12. Banabic D, Balan T, Comsa DS (2000) A new yield criterion for orthotropic sheet metals under plane-stress conditions. In: Banabic D (ed) 7th Cold Metal Forming Conference. Cluj Napoca, Roménia, pp 217–224

    Google Scholar 

  13. Banabic D, Kuwabara T, Balan T, Comsa DS, Julean D (2003) Non-quadratic yield criterion for orthotropic sheet metals under plane-stress conditions. Int J Mech Sci 45:797–811

    Article  MATH  Google Scholar 

  14. Banabic D, Aretz H, Comsa DS, Paraianu L (2005) An improved analytical description of orthotropy in metallic sheets. Int J Plast 21:493–512

    Article  MATH  Google Scholar 

  15. Bron F, Besson J (2004) A yield function for anisotropic materials. Application to aluminum alloys. Int J Plast 20:937–963

    Article  MATH  Google Scholar 

  16. Cazacu O, Barlat F (2001) Generalization of Drucker’s yield criterion to orthotropy. Math Mech Solids 6:613–630

    Article  MATH  Google Scholar 

  17. Aretz H, Barlat F (2012) Unconditionally convex yield functions for sheet metal forming based on linear stress deviator transformation. Key Eng Mat 504–506:667–672

    Article  Google Scholar 

  18. Habraken AM (2004) Modelling the plastic anisotropy of metals. Arch Comput Method Eng 11:3–96

    Article  MATH  Google Scholar 

  19. Barlat F, Chung K (1993) Anisotropic potentials for plastically deformation metals. Model Simul Mater Sci Eng 1:403–416

    Article  Google Scholar 

  20. Barlat F, Chung K, Richmond O (1993) Strain rate potential for metals and its application to minimum plastic work path calculations. Int J Plast 9:51–63

    Article  Google Scholar 

  21. Barlat F, Chung K (2005) Anisotropic strain rate potential for aluminum alloy plasticity. In: Banabic D (ed) Proc. 8th ESAFORM Conference on Material Forming. The Publishing House of the Romanian Academy, Cluj-Napoca, pp 415–418

    Google Scholar 

  22. Kim JH, Lee M, Barlat F, Wagoner RH, Chung K (2008) An elasto-plastic constitutive model with plastic strain rate potentials for anisotropic cubic metals. Int J Plast 24:2298–2334

    Article  MATH  Google Scholar 

  23. Rabahallah M, Balan T, Bouvier S, Teodosiu C (2009) Time-integration scheme for elastoplastic models based on anisotropic strain rate potentials. Int J Numer Meth Eng 80:381–402

    Article  MATH  MathSciNet  Google Scholar 

  24. Cazacu O, Ionescu IR, Yoon JW (2010) Orthotropic strain rate potential for the description of anisotropy in tension and compression of metals. Int J Plast 26:887–904

    Article  MATH  Google Scholar 

  25. Chung K, Lee SY, Barlat F, Keum YT, Park JM (1996) Finite element simulation of sheet metal forming based on a planar anisotropic strain-rate potential. Int J Plast 12:93–115

    Article  MATH  Google Scholar 

  26. Hosford WF (1966) Texture strengthening. Met Eng Q 6:13–19

    Google Scholar 

  27. Liu C, Huang Y, Stout MG (1997) On the asymmetric yield surface of plastically orthotropic materials: a phenomenological study. Acta Metall 45:2397–2406

    Google Scholar 

  28. Cazacu O, Barlat F (2004) A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals. Int J Plast 20:2027–2045

    Article  MATH  Google Scholar 

  29. Cazacu O, Plunkett B, Barlat F (2006) Orthotropic yield criterion for hexagonal closed packed metals. Int J Plast 22:1171–1194

    Article  MATH  Google Scholar 

  30. Nixon ME, Cazacu O, Lebensohn RA (2010) Anisotropic response of high-purity alpha-titanium: experimental characterization and constitutive modeling. Int J Plast 26:516–532

    Article  MATH  Google Scholar 

  31. Plunkett B, Cazacu O, Barlat F (2008) Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals. Int J Plast 24:847–866

    Article  MATH  Google Scholar 

  32. Stoughton TB (2002) A non-associated flow rule for sheet metal forming. Int J Plast 18:687–714

    Article  MATH  Google Scholar 

  33. Stoughton TB, Yoon JW (2004) A pressure-sensitive yield criterion under a non-associated flow rule for sheet metal forming. Int J Plast 20:705–731

    Article  MATH  Google Scholar 

  34. Arghavani J, Auricchio F, Naghdabadi R (2011) A finite strain kinematic hardening constitutive model based on Hencky strain: general framework, solution algorithm and application to shape memory alloys. Int J Plast 27:940–961

    Article  MATH  Google Scholar 

  35. Taherizadeh A, Green DE, Ghaei A, Yoon JW (2010) A non-associated constitutive model with mixed iso-kinematic hardening for finite element simulation of sheet metal formig. Int J Plast 26:288–309

    Article  MATH  Google Scholar 

  36. Taherizadeh A, Green DE, Yoon JW (2011) Evaluation of advanced anisotropic models with mixed hardening for general associated and non-associated flow metal plasticity. Int J Plast 27:1781–1802

    Article  MATH  Google Scholar 

  37. Gao X, Zhang T, Zhou J, Graham M, Hayden M, Roe C (2011) On stress-state dependent plasticity modeling: significance of the hydrostatic stress, the third invariant of stress deviator and the non-associated flow rule. Int J Plast 27:217–231

    Article  Google Scholar 

  38. Wilkins ML (1964) Calculation of elastic–plastic flow, vol 3. Academic Press

  39. Ortiz M, Pinsky PM (1981) Global analysis methods for the solution of elastoplastic and viscoplastic dynamic problems. Dept. Civil Eng. University of California, Berkley, EUA

  40. Ortiz M, Pinsky PM, Taylor RL (1983) Operator split methods for the numerical solution of the elastoplastic dynamic problem. Comput Method Appl Mech Eng 39:137–157

    Article  MATH  MathSciNet  Google Scholar 

  41. Ortiz M, Simo JC (1986) An analysis of a new class of integration algorithms for elastoplastic relations. Int J Numer Method Eng 23:353–366

    Article  MATH  MathSciNet  Google Scholar 

  42. Yoon JW, Yang DY, Chung K (1999) Elasto-plastic finite element method based on incremental deformation theory and continuum based shell elements for planar anisotropic sheet materials. Comput Method Appl Mech Eng 174:23–56

    Article  MATH  Google Scholar 

  43. Sousa RJA, Yoon JW, Cardoso RPR, Valente RA, Gracio JJ (2007) On the use of a reduced enhanced solid-shell (RESS) element for sheet forming simulations. Int J Plast 23:490–515

    Article  MATH  Google Scholar 

  44. Banabic D, Barlat F, Cazacu O, Kuwabara T (2010) Advances in anisotropy and formability. Int J Mater Form 3:165–189

    Article  Google Scholar 

  45. Cardoso RPR, Yoon JW (2009) Stress integration method for a nonlinear kinematic/isotropic hardening model and its characterization based on polycrytal plasticity. Int J Plast 25:1684–1710

    Article  MATH  Google Scholar 

  46. Hinton E (1992) Introduction to nonlinear finite element analysis. NAFEMS Publications

  47. Owen DRJ, Hinton E (1980) Finite elements in plasticity: Theory and practice. Pineridge Press Limited, Swansea

    MATH  Google Scholar 

  48. Yoon JW, Barlat F, Gracio JJ, Rauch E (2005) Anisotropic strain hardening behavior in simple shear for cube textured aluminum alloy sheets. Int J Plast 21:2426–2447

    Article  MATH  Google Scholar 

  49. Huang J, Griffiths DV (2009) Return mapping algorithms and stress predictors for failure analysis in geomechanics. J Eng Mech 135:276–284

    Article  Google Scholar 

  50. Yoon JW, Barlat F, Chung K, Pourboghrat F, Yang DY (2000) Earing predictions based on asymmetric nonquadratic yield function. Int J Plast 16:1075–1104

    Article  MATH  Google Scholar 

  51. NUMISHEET'96 organizing committee (1996) In: Lee JK (ed) 3rd International Conference of NUMISHEET'96, Dearborn, Michigan, EUA

Download references

Acknowledgments

The authors acknowledge the financial support given by the grants SFRH/BD/82286/2011, PTDC/EME-TME/115876/2009 and PTDC/EME-TME/098845/2008, from the Fundação para a Ciência e a Tecnologia, Ministério da Educação e Ciência (Portugal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Grilo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grilo, T.J., Valente, R.A.F. & de Sousa, R.J.A. Assessment on the performance of distinct stress integration algorithms for complex non-quadratic anisotropic yield criteria. Int J Mater Form 7, 233–247 (2014). https://doi.org/10.1007/s12289-012-1123-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-012-1123-6

Keywords

Navigation