Skip to main content
Log in

Scorch arisen prediction through elastomer flow in extrusion die

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The thermal and kinetic behaviour of an elastomer flow inside an extrusion die is numerically investigated. The aim is to control scorch arisen and reduce the heating time in the mould by using viscous dissipation phenomena in order to improve the rubber compound curing efficiency. A three dimensional model, using the particle tracking technique, is developed in order to get thermal, velocity and kinetic fields through the flow. Three common geometries of an elastomer forming process are modeled: a straight runner, a bend zone and a bifurcation. This simulation is applied on the case of an EPDM (ethylene propylene diene monomer) flow. The thermal and rheological properties are experimentally characterized. The influence of viscous dissipation on the reaction progress of the melt is studied on several process conditions. Many criterions relevant for thermal and cure homogeneity are proposed in order to quantify the performance of geometry modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brinkman H (1951) Heat effects in capillary flow I. Appl Sci Res 2:120–124

    Article  Google Scholar 

  2. Karkri M, Jarny Y, Mousseau P (2008) Thermal state of an incompressible pseudo-plastic fluid and nusselt number at the interface fluid-die wall. Int J Therm Sci 47:1284–1293

    Article  Google Scholar 

  3. Pujos C, Régnier N, Defaye G (2008) Determination of the inlet temperature profile of an extrusion die in unsteady flow. Chem Eng Process 47:456–462

    Article  Google Scholar 

  4. Yataghene M, Fayolle F, Legrand J (2009) Experimental and numerical analysis of heat transfer including viscous dissipation in a scraped surface heat exchanger. Chem Eng Process 48:1445–1458

    Google Scholar 

  5. Laun H (2003) Pressure dependent viscosity and dissipative heating in capillary rheometry of polymer melts. Rheol Acta 42:295–308

    Article  Google Scholar 

  6. Kang SY, Jayaraman K (2002) Wall slip and viscous heating effects on the flow of polypropylene/EP rubber blend in capillary rheometer. J Ind Eng Chem 8:370–374

    Google Scholar 

  7. Ha YS, Cho JR, Kim TH, Kim JH (2008) Finite element analysis of rubber extrusion forming process for automobile weather strip. J Mater Process Technol 201:168–173

    Article  Google Scholar 

  8. Mani S, Cassagnau P, Bousmina M et al (2009) Cross-linking control of PDMS rubber at high temperatures using TEMPO nitroxide. Macromolecules 42:8460–8467

    Article  Google Scholar 

  9. Launay J, Allanic N, Mousseau P, Deterre R (2011) Thermal and kinetic modelling of elastomer flow–application to an extrusion die. In: The 14th international ESAFORM conference on material forming (BELFAST), AIP Conf. Proc. 1353:1101–1106; doi:10.1063/1.3589663

  10. Beaumont JP (2007) Runner and gating design handbook, 2nd edn. Hanser, Munich

    Google Scholar 

  11. Aloku GO, Yuan X-F (2010) Numerical simulation of polymer foaming process in extrusion flow. Chem Eng Sci 65:3749–3761

    Article  Google Scholar 

  12. Agassant JF, Avenas P, Sergent JP, Carreau PJ (1991) Polymer processing: principles and modeling. Hanser, Munich

    Google Scholar 

  13. Limper A, Schramm D (2002) Process description for the extrusion of rubber compounds–development and evaluation of a screw design software. Macromol Mater Eng 287:824–835

    Article  Google Scholar 

  14. Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena, 2nd edn. J. Wiley & Sons, Inc

  15. Crawford B, Watterson JK, Spedding PL, Raghunathan S, Herron W, Proctor M (2005) Wall slippage with siloxane gum and silicon rubbers. J Non-Newtonian Fluid 129:38–45

    Article  Google Scholar 

  16. Rafei M, Ghoreishy MHR, Naderi G (2009) Development of an advanced computer simulation technique for the modeling of rubber curing process. Comp Mater Sci 47:539–547

    Article  Google Scholar 

  17. Claxton NE, Liska JW (1964) Calculation of state of cure in rubber under variable time temperature conditions. Rubber Age 9:237–244

    Google Scholar 

  18. Isayev A, Deng J (1987) Nonisothermal vulcanization of rubber compounds. Rubber Chem Technol 69:277–312

    Google Scholar 

  19. Cheheb Z, Mousseau P, Sarda A, Deterre R (2011) Thermal conductivity of rubber compounds versus the state of cure. Macromol Mater Eng 297:228–236

    Article  Google Scholar 

  20. Gill P, Sauerbrunn S, Reading M (1993) Modulated differential scanning calorimetry. J Therm Anal Calorim 40:931–939

    Article  Google Scholar 

  21. Arrilaga A, Zaldua AM, Atxurra RM, Farid AS (2007) Techniques used for determining cure kinetics of rubber compounds». Eur Polymer J 43:4783–4799

    Article  Google Scholar 

  22. Lamnawar K, Mazazouz A (2006) Rheological study of multilayer functionalized polymers: characterization of interdiffusion and reaction at polymer/polymer interface. Rheol Acta 45:411–424

    Article  Google Scholar 

  23. Ramorino G, Girardi M, Agnelli S, Franceschini A, Baldi F, Vigano F, Ricco T (2010) Injection molding of engineering rubber components: a comparison between experimental results and numerical simulation. Int J Mater Form 3:551–554

    Article  Google Scholar 

  24. Bagley EB (1957) End corrections in the capillary flow of polyethylene. J Appl Phys 28:624–627

    Article  Google Scholar 

  25. Rabinowitsch B (1929) Über die viskosität und elastizität von Solen. Z Phys Chem 145:1–26, in German

    Google Scholar 

  26. Winter HH (1977) Viscous dissipation in shear flows of molten polymers. Adv Heat Tran 13:206–267

    Google Scholar 

  27. Sombatsompop N, Tan MC, Wood AK (1997) Flow analysis of natural rubber in a capillary rheometer. 1: rheological behavior and flow visualization in the barrel. Polym Eng Sci 37:270–280

    Article  Google Scholar 

  28. Ghoreishy MHR, Razavi-Nouri M, Naderi G (2005) Finite element analysis of a thermoplastic elastomer melt flow in the metering region of a single screw extruder. Comp Mater Sci 34:389–396

    Article  Google Scholar 

  29. Baaijens FPT (1998) Mixed finite element methods for viscoelastic flow analysis: a review. J Non-Newtonian Fluid 79:361–385

    Article  MATH  Google Scholar 

  30. Connelly RK, Kokini JL (2007) Examination of the mixing ability of single and twin screw mixers using 2D finite element method simulation with particle tracking. J Food Eng 79:956–969

    Article  Google Scholar 

  31. Wei D, Luo H (2003) Finite element solutions of heat transfer in molten polymer flow in tubes with viscous dissipation. Int J Heat Mass Transfer 46:3097–3108

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Launay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Launay, J., Allanic, N., Mousseau, P. et al. Scorch arisen prediction through elastomer flow in extrusion die. Int J Mater Form 7, 197–205 (2014). https://doi.org/10.1007/s12289-012-1120-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-012-1120-9

Keywords

Navigation