Skip to main content

Prediction of optimal flow front velocity to minimize void formation in dual scale fibrous reinforcements


Liquid Composite Molding (LCM) is an increasingly used class of processes to manufacture high performance composites. Engineering fabrics commonly used in LCM generally have a dual scale architecture in terms of porosity: microscopic pores exist between the filaments in the fiber tows, while macroscopic pores appear between the tows. Capillary flows in fiber tows play a major role on the quality of composites made by resin injection through fibrous reinforcements. This paper reports on an investigation on fabric imbibition characterization and subsequent evaluation of the optimal flow front velocity during resin injection through fibrous reinforcements. The goal is to devise more robust LCM processes and improve part quality. In order to evaluate a priori the injection conditions that minimize void formation, an impregnation model is developed based on imbibition characterization. This approach allows predicting the optimal front velocity without having to model complex dual scale flows through fibrous reinforcements and without performing expensive and time-consuming fabrication tests. After a summary of previous imbibition results obtained with a probe fluid, the optimal modified capillary numbers are computed by the new predictive model and the values are compared with results reported in the literature on void formation in LCM processes. Afterwards, capillary rise measurements are carried out with four infiltration fluids in order to evaluate the range of optimal flow front velocity that minimizes void formation. This characterization is implemented with vinyl ester resin, epoxy anhydride resin, styrene and anhydride. Finally, the optimal flow front velocity is evaluated for several fabric configurations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18


  1. 1.

    Trochu F, Ruiz E, Achim V, Soukane S (2006) Advanced numerical simulation of liquid composite molding for process analysis and optimization. Compos Part A 37(6):890–902. doi:10.1016/j.compositesa.2005.06.003

    Article  Google Scholar 

  2. 2.

    García J, Gascon L, Chinesta F, Ruiz E, Trochu F (2010) An efficient solver of the saturation equation in liquid composite molding processes. Int J Mater Form 3(Supp. 2):1295–1302. doi:10.1007/s12289-010-0681-8

    Article  Google Scholar 

  3. 3.

    Leclerc J (2008) Amélioration du procédé RTM par l’optimisation des paramètres d’injection. Ecole Polytechnique, Canada, p 126

    Google Scholar 

  4. 4.

    Leclerc JS, Ruiz E (2008) Porosity reduction using optimized flow velocity in Resin Transfer Molding. Compos Part A 39(12):1859–1868. doi:10.1016/j.compositesa.2008.09.008

    Article  Google Scholar 

  5. 5.

    Ghiorse SR (1993) Effect of void content on the mechanical-properties of carbon epoxy laminates. SAMPE Q 24(2):54–59

    Google Scholar 

  6. 6.

    Judd NCW, Wright WW (1978) Voids and their effects on the mechanical properties of composites—An appraisal. SAMPE J 14(1):10–14

    Google Scholar 

  7. 7.

    Lambert J, Chambers AR, Sinclair I, Spearing SM (2012) 3D damage characterisation and the role of voids in the fatigue of wind turbine blade materials. Compos Sci Tech 72(2):337–343. doi:10.1016/j.compscitech.2011.11.023

    Article  Google Scholar 

  8. 8.

    Haider M, Hubert P, Lessard L (2007) An experimental investigation of class A surface finish of composites made by the resin transfer molding process. Compos Sci Tech 67(15–16):3176–3186. doi:10.1016/j.compscitech.2007.04.010

    Article  Google Scholar 

  9. 9.

    Achim V, Ruiz E (2010) Guiding selection for reduced process development time in RTM. Int J Mater Form 3:1277–1286. doi:10.1007/s12289-009-0630-6

    Article  Google Scholar 

  10. 10.

    Ruiz E, Achim V, Soukane S, Trochu F, Breard J (2006) Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites. Compos Sci Tech 66(3–4):475–486. doi:10.1016/j.compscitech.2005.06.013

    Article  Google Scholar 

  11. 11.

    Amico SC, Lekakou C (2002) Axial impregnation of a fiber bundle. Part 1: capillary experiments. Polym Comp 23(2):249–263. doi:10.1002/pc.10429

    Article  Google Scholar 

  12. 12.

    Amico SC, Lekakou C (2002) Axial impregnation of a fiber bundle. Part 2: theoretical analysis. Polym Comp 23(2):264–273. doi:10.1002/pc.10430

    Article  Google Scholar 

  13. 13.

    Batch GL, Chen Y-T, Macosko CW (1996) Capillary impregnation of aligned fibrous beds: experiments and model. J Reinf Plast Compos 15(10):1027–1050. doi:10.1177/073168449601501004

    Google Scholar 

  14. 14.

    Sénécot J-M (2002) Étude de l’imprégnation capillaire de tissus de verre. Université de Haute Alsace, France

    Google Scholar 

  15. 15.

    Mhetre S, Parachuru R (2010) The effect of fabric structure and yarn-to-yarn liquid migration on liquid transport in fabrics. J Text Inst 101(7):621–626. doi:10.1080/00405000802696469

    Article  Google Scholar 

  16. 16.

    Ben Abdelwahed MA (2011) Mécanismes d’imprégnation en milieux fibreux: Modélisation et application à la mise en oeuvre des matériaux composites à fibres longues. Université du Havre, France

    Google Scholar 

  17. 17.

    LeBel F, Fanaei AE, Ruiz E, Trochu F (2012) Experimental characterization by fluorescence visualization of capillary flows in the fiber tows of engineering fabrics. Open J Inorg Non-met Mater 2(3):25–35. doi:10.4236/ojinm.2012.23004

    Google Scholar 

  18. 18.

    LeBel F, Fanaei AE, Ruiz E, Trochu F (2012) Experimental characterization by fluorescence visualization of capillary flows in dual scale fibrous reinforcements. Textile Research Journal In Press Accepted Manuscript

  19. 19.

    Bickerton S, Simacek P, Pillai KM, Mogavero J, Advani SG (1997) Important mold filling issues in liquid composite molding processes: Modeling and experiments. Soc of Plastics Engineers, Brookfield

    Google Scholar 

  20. 20.

    Lundstrom S, Gebart R (1994) Influence from process parameters on void formation in resin transfer molding. Polym Comp 15(1):25–33

    Article  Google Scholar 

  21. 21.

    Patel N, Lee LJ (1995) Effects of fiber mat architecture on void formation and removal in liquid composite molding. Polym Comp 16(5):386–399

    Article  Google Scholar 

  22. 22.

    Hayward JS, Harris B (1989) Processing factors affecting the quality of resin transfer moulded composities. Plast Rubber Process Appl 11(4):191–198

    Google Scholar 

  23. 23.

    Park CH, Woo L (2011) Modeling void formation and unsaturated flow in liquid composite molding processes: a survey and review. J Reinf Plast Compos 30(11):957–977. doi:10.1177/0731684411411338

    Article  Google Scholar 

  24. 24.

    Ratle F, Achim V, Trochu F (2009) Evolutionary operators for optimal gate location in liquid composite moulding. Appl Soft Comput 9(2):817–23. doi:10.1016/j.asoc.2008.05.008

    Article  Google Scholar 

  25. 25.

    Hodgson KT, Berg JC (1988) Effect of surfactants on wicking flow in fiber networks. J Colloid Interface Sci 121(1):22–31

    Article  Google Scholar 

  26. 26.

    Plueddemann EP (1974) Interfaces in polymer matrix composites, vol 6, Composite materials. Academic, New York, p 294, xxi

    Google Scholar 

  27. 27.

    DiBenedetto AT (2001) Tailoring of interfaces in glass fiber reinforced polymer composites: a review. Mater Sci Eng, A 302(1):74–82. doi:10.1016/s0921-5093(00)01357-5

    Article  MathSciNet  Google Scholar 

  28. 28.

    Lundstrom TS (1997) Measurement of void collapse during resin transfer moulding. Compos Part A 28(3):201–214

    Article  Google Scholar 

  29. 29.

    Gourichon B, Deleglise M, Binetruy C, Krawczak P (2008) Dynamic void content prediction during radial injection in liquid composite molding. Compos Part A 39(1):46–55

    Article  Google Scholar 

  30. 30.

    Labat L, Breard J, Pillut-Lesavre S, Bouquet G (2001) Void fraction prevision in LCM parts. EPJ Appl Phys 16(2):157–164

    Article  Google Scholar 

  31. 31.

    Park CH, Lebel A, Saouab A, Breard J, Lee WI (2011) Modeling and simulation of voids and saturation in liquid composite molding processes. Compos Part A 42(6):658–668. doi:10.1016/j.compositesa.2011.02.005

    Article  Google Scholar 

  32. 32.

    Gourichon B, Binetruy C, Krawczak P (2006) Experimental investigation of high fiber tow count fabric unsaturation during RTM. Compos Sci Tech 66(7–8):976–82

    Article  Google Scholar 

  33. 33.

    Schell JSU, Deleglise M, Binetruy C, Krawczak P, Ermanni P (2007) Numerical prediction and experimental characterisation of meso-scale-voids in liquid composite moulding. Compos Part A 38(12):2460–2470

    Article  Google Scholar 

  34. 34.

    Lundström TS, Frishfelds V, Jakovics A (2010) Bubble formation and motion in non-crimp fabrics with perturbed bundle geometry. Compos Part A 41(1):83–92. doi:10.1016/j.compositesa.2009.05.012

    Article  Google Scholar 

  35. 35.

    Chen Y-T, Macosko CW, Davis HT (1995) Wetting of fiber mats for composites manufacturing: II. Air entrapment model. AICHE J 41(10):2274–2281

    Article  Google Scholar 

  36. 36.

    Verrey J, Michaud V, Manson JAE (2006) Dynamic capillary effects in liquid composite moulding with non-crimp fabrics. Compos Part A 37(1):92–102

    Article  Google Scholar 

  37. 37.

    Patel N (1994) Micro-scale flow behavior, fiber wetting and void formation in liquid composite molding. The Ohio State University, Ohio, p 380

    Google Scholar 

  38. 38.

    Mahale AD, Prudhomme RK, Rebenfeld L (1992) Quantitative measurement of voids formed during liquid impregnation of nonwoven multifilament glass networks using an optical visualization technique. Polym Eng Sci 32(5):319–326

    Article  Google Scholar 

  39. 39.

    Slade J, Pillai KM, Advani SG (2001) Investigation of unsaturated flow in woven, braided and stitched fiber mats during mold-filling in resin transfer molding. Polym Comp 22(4):491–505

    Article  Google Scholar 

  40. 40.

    Johnson RW (1998) The handbook of fluid dynamics, vol 1. CRC Press, Boca Raton, Various

    MATH  Google Scholar 

  41. 41.

    Pillai KM (2004) Modeling the unsaturated flow in liquid composite molding processes: a review and some thoughts. J Compos Mater 38(23):2097–2118

    Article  Google Scholar 

  42. 42.

    Blake FC (1922) The resistance of packing to fluid flow. AICHE J 14(Compendex):415–422

    Google Scholar 

  43. 43.

    Williams JG, Morris CEM, Ennis BC (1974) Liquid flow through aligned fiber beds. Polym Eng Sci 14(6):413–419. doi:10.1002/pen.760140603

    Article  Google Scholar 

  44. 44.

    Marmoret L, Beji H, Perwuelz A (2011) Determination of the pore sizes and their influence on the capillary imbibition into glass wool. Defect Diff Forum 312–315:812–17. doi:10.4028/

    Article  Google Scholar 

  45. 45.

    Gennes P-G, Brochard-Wyart F, Quéré D (2004) Capillarity and wetting phenomena: Drops, bubbles, pearls, waves. Springer, New York, p 291, xv

    Book  Google Scholar 

  46. 46.

    White LR (1982) Capillary rise in powders. J Colloid Interface Sci 90(2):536–538. doi:10.1016/0021-9797(82)90319-8

    Article  Google Scholar 

  47. 47.

    Ahn KJ, Seferis JC, Berg JC (1991) Simultaneous measurements of permeability and capillary-pressure of thermosetting matrices in woven fabric reinforcements. Polym Comp 12(3):146–152. doi:10.1002/pc.750120303

    Article  Google Scholar 

  48. 48.

    Bear J (1972) Dynamics of fluids in porous media. Environmental science series. American Elsevier Pub. Co, New York, p 764

    Google Scholar 

  49. 49.

    Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319. doi:10.1021/ja01269a023

    Article  Google Scholar 

  50. 50.

    Hollies NRS, Kaessinger MM, Bogaty H (1956) Water transport mechanisms in textile materials1 Part I: the role of yarn roughness in capillary-type penetration. Text Res J 26(11):829–835. doi:10.1177/004051755602601102

    Article  Google Scholar 

  51. 51.

    Patnaik A, Rengasamy RS, Kothari VK, Ghosh A (2006) Wetting and wicking in fibrous materials. Text Prog 38(1):1–105

    Article  Google Scholar 

  52. 52.

    Siebold A, Nardin M, Schultz J, Walliser A, Oppliger M (2000) Effect of dynamic contact angle on capillary rise phenomena. Colloids Surf A 161(1):81–87. doi:10.1016/S0927-7757(99)00327-1

    Article  Google Scholar 

  53. 53.

    Chwastiak S (1973) A wicking method for measuring wetting properties of carbon yarns. J Colloid Interface Sci 42(2):298–309

    Article  Google Scholar 

  54. 54.

    Bico J, Quere D (2003) Precursors of impregnation. Europhys Lett 61(3):348–53. doi:10.1209/epl/i2003-00196-9

    Article  Google Scholar 

  55. 55.

    Washburn EW (1921) The dynamics of capillary flow. Phys Rev 18(3):273–283. doi:10.1103/PhysRev.17.273

    Article  Google Scholar 

  56. 56.

    Hamdaoui M, Fayala F, Nasrallah SB (2007) Dynamics of capillary rise in yarns: influence of fiber and liquid characteristics. J Appl Polym Sci 104(Copyright 2007, The Institution of Engineering and Technology):3050–6. doi:10.1002/app.25642

    Google Scholar 

  57. 57.

    Rose W, Witherspoon PA (1956) Trapping oil in pore doublet. Producers. Monthly 20:23–38

    Google Scholar 

  58. 58.

    Lundstrom TS, Gustavsson LH, Jekabsons N, Jakovics A (2008) Wetting dynamics in multiscale porous media. Porous pore-doublet model, experiment and theory. AICHE J 54(2):372–380

    Article  Google Scholar 

  59. 59.

    Ben Abdelwahed MA, Wielhorski Y, Bizet L, Bréard J. Void prediction during liquid composite molding processes: Wetting and Capillary Phenomena in 5th European Conference on Composite Materials—ECCM15. 2012. Venice, Italy

  60. 60.

    Kang MK, Lee WI, Hahn HT (2000) Formation of microvoids during resin-transfer molding process. Compos Sci Tech 60(12–13):2427–2434

    Article  Google Scholar 

  61. 61.

    Miller B, Tyomkin I (1994) Liquid porosimetry: new methodology and applications. J Colloid Interface Sci 162(1):163–170

    Article  Google Scholar 

  62. 62.

    Woo Il L, Doh Hoon L, Moon Koo K (2006) Analysis and minimization of void formation during resin transfer molding process. Compos Sci Tech 66(16):3281–9

    Article  Google Scholar 

  63. 63.

    Michaud V, Mortensen A (2007) On measuring wettability in infiltration processing. Scr Mater 56(10):859–862

    Article  Google Scholar 

  64. 64.

    Brooks RH, Corey AT (1966) Properties of porous media affecting fluid flow. American Society of Civil Engineers Proceedings, Journal of the Irrigation and Drainage Division 92(IR2):61–88

    Google Scholar 

  65. 65.

    Xie S (2002) Characterization of interyarn pore size and its distribution in plain woven fabrics. North Carolina State University, United States, p 114

    Google Scholar 

  66. 66.

    Stokes RJ, Evans DF (1997) Fundamentals of interfacial engineering. Advances in interfacial engineering series. New York: Wiley-VCH. xxviii, 701 p

  67. 67.

    Bayramli E, Powell RL (1992) Impregnation dynamics of carbon-fiber tows. J Compos Mater 26(10):1427–1442

    Article  Google Scholar 

  68. 68.

    Gebart BR (1992) Permeability of unidirectional reinforcements for RTM. J Compos Mater 26(8):1100–1133. doi:10.1177/002199839202600802

    Article  Google Scholar 

  69. 69.

    Lundström TS, Gebart BR (1995) Effect of perturbation of fibre architecture on permeability inside fibre tows. J Compos Mater 29(4):424–443

    Article  Google Scholar 

  70. 70.

    Thomason JL, Dwight DW (1999) The use of XPS for characterisation of glass fibre coatings. Compos Part A 30(12):1401–1413. doi:10.1016/s1359-835x(99)00042-1

    Article  Google Scholar 

  71. 71.

    Saidpour SH, The effect of fibre/matrix interfacial interactions on the mechanical properties of unidirectional e-glass reinforced vinyl ester composites, 1991, Loughborough University of Technology: UK. p. 301

  72. 72.

    Bayramli E, Powell RL (1991) Experimental investigation of the axial impregnation of oriented fiber-bundles by capillary forces. Colloids Surf 56:83–100. doi:10.1016/0166-6622(91)80115-5

    Article  Google Scholar 

  73. 73.

    Page SA, Berg JC, Manson JAE (2001) Characterization of epoxy resin surface energetics. J Adhes Sci Technol 15(2):153–170

    Article  Google Scholar 

  74. 74.

    Adamson AW, Gast AP (1997) Physical chemistry of surfaces, 6th edn. Wiley, New York; Chichester, p 784

    Google Scholar 

  75. 75.

    Otsu N (1979) Threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. SMC-9(Compendex):62–66. doi:10.1109/TSMC.1979.4310076

    Google Scholar 

  76. 76.

    Larson BK, Drzal LT, Van Antwerp J (1995) Swelling and dissolution rates of glass fiber sizings in matrix resin via micro-dielectrometry. Polym Comp 16(Compendex):415–420

    Google Scholar 

  77. 77.

    Lowe JR (1994) Void formation in resin transfer moulding. The University of Nottingham, United Kingdom

    Google Scholar 

  78. 78.

    Halley PJ, Mackay ME (1996) Chermorheology of thermosets—an overview. Polym Eng Sci 36(5):593–609

    Article  Google Scholar 

  79. 79.

    Ilias S, Siegel MC, Sadler RL, Avva VS (1995) Effect of surface active agents on void minimization in RTM processing of carbon-epoxy composites. Int SAMPE Tech Conf 27:457–471

    Google Scholar 

  80. 80.

    Petke FD, Ray BR (1969) Temperature dependence of contact angles of liquids on polymeric solids. J Colloid Interface Sci 31(Compendex): 216–227

    Google Scholar 

  81. 81.

    Kurematsu K, Koishi M (1983) Temperature dependence of liquid epoxy resin impregnation through polyester non-woven fabric. Colloid Polym Sci 261(10):834–845

    Article  Google Scholar 

  82. 82.

    Gonzalez-Romero VM, Macosko CW (1990) Process parameters estimation for structural reaction injection molding and resin transfer molding. Polym Eng Sci 30(3):142–146

    Article  Google Scholar 

Download references


The authors are grateful to the National Science and Engineering Research Council of Canada (NSERC) and the Canada Research Chair (CRC) for their financial support. The authors would also like to thank the Fonds Québécois de Recherche sur la Nature et la Technologie (FQRNT), the Chair on Composites of High Performance (CCHP) of École Polytechnique de Montréal and the Center for applied research on polymer and composites (CREPEC) for providing the research infrastructure and equipment. They are also very grateful to JB Martin for donating the fiber reinforcement used in the experiments. Futhermore, the authors would like to express their deep appreciation to Suzie Poulin, Yves Bédard, Régina Zamojska and Catherine Billotte for their support in the characterization work. Finally, the contributions of Christian-Charles Martel, Alex Bourgeois, Antonin Leclair-Maréchal, Michael Cantin, Nadir Nchit, Mickëal Leduc, Simon Dulong, Frédérick Marcil St-Onge, Francisco Doyon, Matthieu Sola, Farida Bensadoun, Julian Gutierrez, Nicolas Vernet, Philippe Causse and Vincent Achim are gratefully acknowledged.

Author information



Corresponding author

Correspondence to François Trochu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

LeBel, F., Fanaei, A.E., Ruiz, É. et al. Prediction of optimal flow front velocity to minimize void formation in dual scale fibrous reinforcements. Int J Mater Form 7, 93–116 (2014).

Download citation


  • Liquid composite molding
  • Capillary rise
  • Modified capillary number
  • Penetrativity
  • Void formation