The microstructure and rheology of carbon nanotube suspensions

Abstract

This paper gives a brief overview of microstructure and rheology that have been observed for a range of carbon nanotube (CNT) suspensions. In general, untreated CNT suspensions show a much higher level of observable optical microstructure reflecting their preference to aggregate; they also show higher levels of viscoelasticity over treated CNT suspensions. An unexpected Helical Band texture for untreated CNTs is reported together with a series of parallel plate optical observations showing a broad spectrum of behaviour for different shear conditions. Both steady shear and linear viscoelastic data are presented for treated and untreated systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Hobbie EK, Wang H, Kim H, Han CC, Grulke EA (2003a) Optical measurements of structure and orientation in sheared carbon-nanotube suspensions. Review of Scientific Instruments 74:1244–1250

    Article  Google Scholar 

  2. 2.

    Hobbie EK, Wang H, Kim H, Lin-Gibson S, Grulke EA (2003b) Orientation of carbon nanotubes in a sheared polymer melt. Phys Fluids 15:1196–1202

    Article  Google Scholar 

  3. 3.

    Lin-Gibson S, Pathak JA, Grulke EA, Wang H, Hobbie EK (2004) Elastic flow instability in nanotube suspensions. Phys Rev Lett 92:483021–483024

    Google Scholar 

  4. 4.

    Rahatekar SS, Koziol KKK, Butler SA, Elliott JA, Shaffer MSP, Mackley MR, Windle AH (2006) Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multi-wall carbon nanotubes. J Rheol 50:599–610

    Article  Google Scholar 

  5. 5.

    Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43:3247–3255

    Article  Google Scholar 

  6. 6.

    Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43:1378–1385

    Article  Google Scholar 

  7. 7.

    Saib A, Bednarz L, Daussin R, Bailly C, Lou X, Thomassin JM, Pagnoulle C, Detrembleur C, Jérôme R, Huynen I (2006) Carbon nanotube composites for broadband microwave absorbing materials. IEEE Trans Microw Theory Tech 54:2745–2754

    Article  Google Scholar 

  8. 8.

    Fan Z, Advani SG (2007) Rheology of multiwall carbon nanotube suspensions. J Rheol 51:585–604

    Article  Google Scholar 

  9. 9.

    Ma AWK, Chinesta F, Tuladhar T, Mackley MR (2008a) Filament stretching of carbon nanotube suspensions. Rheol Acta, published online

  10. 10.

    Ma AWK, Chinesta F, Mackley MR (2008b) Rheological modelling of carbon nanotube aggregate suspensions. J Rheol, submitted

  11. 11.

    Ma AWK, Chinesta F, Mackley MR (2008c) The rheology and modelling of chemically treated carbon nanotube suspensions. J Rheol (submitted)

  12. 12.

    Litchfield DW, Baird DG (2006) The rheology of high aspect ratio nano-particle filled liquids in binding, D. M., Walters, K. (eds.) Rheology Reviews. The British Society of Rheology

  13. 13.

    Ma AWK, Malcolm MR, Rahatekar SS (2007) Experimental observation on the flow-induced assembly of carbon nanotube suspensions to form Helical Bands. Rheol Acta 46:979–987

    Article  Google Scholar 

  14. 14.

    Smoluchowski M (1917) Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z Phys Chem 92:129–168

    Google Scholar 

  15. 15.

    Vermant J, Solomon MJ (2005) Flow-induced structure in colloidal suspensions. J Phys Condens Matter 17:R187–R216

    Article  Google Scholar 

  16. 16.

    Mykhaylyk OO, Chambon P, Graham RS, Fairclough JPA, Olmsted PD, Ryan AJ (2008) The specific work of flow as a criterion for orientation in polymer crystallisation. Macromolecules 41:1901–1904

    Article  Google Scholar 

  17. 17.

    Dyke CA, Tour JM (2004) Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization. Chem Eur J 10:812–817

    Article  Google Scholar 

  18. 18.

    Dyke CA, Tour JM (2003) Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Lett. 3:1215–1218

    Article  Google Scholar 

  19. 19.

    Ma AWK (2006) The rheology, microstructure and film processing of carbon nanotube suspensions. Certificate of Postgraduate Study Dissertation, University of Cambridge

  20. 20.

    Cross MM (1965) Rheology of non-Newtonian fluids: a new flow equation for pseudo-plastic systems. J Colloid Interface Sci 20:417–437

    Google Scholar 

  21. 21.

    Xu J, Chatterjee S, Koelling KW, Wang Y, Bechtel SE (2005) Shear and extensional rheology of carbon nanofibers suspensions. Rheo Acta 44:537–562

    Article  Google Scholar 

  22. 22.

    Huang YY, Ahir SV, Terentjev EM (2006) Dispersion rheology of carbon nanotubes in a polymer matrix. Phys Rev B 73:1254221–12542219

    Google Scholar 

  23. 23.

    Hough LA, Islam MF, Janmey PA, Yodh AG (2004) Viscoelasticity of single wall carbon nanotube suspensions. Phys Rev Lett 93:1681021–1681024

    Article  Google Scholar 

  24. 24.

    Amari T, Watanabe K (1980) Stress relaxation of carbon black-linseed oil suspensions. J Soc Rheol Jpn 8:80–83

    Google Scholar 

  25. 25.

    Mewis J, Meire C (1984) Yielding in weakly flocculated systems. In:Mena B, García-Rejón A, Rangel-Nafaille C (eds) Advances in Rheology—Volume 2: Fluids. Elsevier

  26. 26.

    Winter HH (1999) Soft polymeric materials near the transition from liquid to solid state. Korea-Australia Rheol J 11:275–278

    Google Scholar 

  27. 27.

    Petrie CJS (1999) The rheology of fibre suspensions. J Non-Newton Fluid Mech 87:369–402

    MATH  Article  Google Scholar 

  28. 28.

    Larson RG (1999) The Structure and Rheology of Complex Fluids: 261–355. Oxford University Press, New York

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Malcolm R. Mackley.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ma, A.W.K., Mackley, M.R. & Chinesta, F. The microstructure and rheology of carbon nanotube suspensions. Int J Mater Form 1, 75–81 (2008). https://doi.org/10.1007/s12289-008-0375-7

Download citation

Keywords

  • Microstructure
  • Rheology
  • Carbon nanotube suspensions