Skip to main content
Log in

Evaluation of a New Method of Leukocyte Extractions from the Leukoreduction Filter

  • ORIGINAL ARTICLE
  • Published:
Indian Journal of Hematology and Blood Transfusion Aims and scope Submit manuscript

Abstract

This study’s purpose was to optimize the leukocyte extraction protocol and evaluate the efficacy of this new protocol. 12BioR blood filters were collected from Tehran Blood Transfusion Center. A twosyringe system and Multi-step rinsing were designed for cell extraction. The final purpose of this optimization was: (1) removed the residual RBCs, (2) reversed the leukocyte trapping process, and (3) remove the microparticles to obtain the high yield of target cells. Finally, Extracted cells were evaluated by Automated Cell count; Samples smear differential cell count, Trypan blue, and Annexin-PI staining. The results showed that on average 11.88 × 108 ± 3.32 leukocytes recovered after indirect washing and that the mean count of granulocytes, lymphocytes, and Monocyte in this sample was 5.24 ± 2.18 × 108, 5.57 ± 1.74 × 108, and 0.56 ± 0.38 × 108 respectively. Also, the mean percent of manual differential cell count after concentration was 42.81%, 41.80%, and 15.82% for granulocytes, lymphocytes, and monocytes respectively. Moreover, viability and apoptosis assay showed > 95% viability in mononuclear cells recovered from LRFs. It is concluded that the use of a double-syringe system and RBC and microparticles removal from leukoreduction filters lead to acceptable viable leukocyte count that can be used in in vitro and in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Roback J, Combs M, Grossman B, Hillyer C (2008) American association of blood banks technical manual, vol 376. American Association of Blood Banks, Bethesda, MD, p 471

    Google Scholar 

  2. Sharma R, Marwaha N (2010) Leukoreduced blood components: advantages and strategies for its implementation in developing countries. Asian J Transfus Sci 4(1):3–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bianchi M, Vaglio S, Pupella S, Marano G, Facco G, Liumbruno GM, Grazzini G (2016) Leucoreduction of blood components: An effective way to increase blood safety? Blood Transfus 14(3):214

    PubMed  PubMed Central  Google Scholar 

  4. Mönninghoff J, Moog R (2012) Investigation of a new in-lineleukocyte reduction filter for packed red blood cells. TransfusApher Sci 46(3):253–256

    Google Scholar 

  5. Singh S, Kumar A (2009) Leukocyte depletion for safe blood transfusion. Biotechnol J 4(8):1140–1151

    Article  CAS  PubMed  Google Scholar 

  6. Singh S, Kumar A (2009) Leukocyte depletion for safe blood transfusion. Biotechnol J 4:1140–1151

    Article  CAS  PubMed  Google Scholar 

  7. Fergusson D, Khanna MP, Tinmouth A, Hébert PC (2004) Transfusion of leukoreduced red blood cells may decrease postoperative infections: two meta-analyses of randomized controlled trials. Can J Anaesth 51(5):417–424

    Article  PubMed  Google Scholar 

  8. Pennington J, Taylor GP, Sutherland J, Davis RE, Seghatchian J, Allain J-P et al (2002) Persistence of HTLV-I in blood components after leukocyte depletion. Blood 100(2):677–681

    Article  CAS  PubMed  Google Scholar 

  9. Rapaille A, Moore G, Siquet J, Flament J, Sondag-Thull D (1997) Prestorage leukocyte reduction with in-line filtration of whole blood: evaluation of red cells and plasma storage. Vox Sang 73(1):28–35

    Article  CAS  PubMed  Google Scholar 

  10. Sen A, Khetarpal Sm A, Jetley S (2010) Comparative study of pre-deposit and bedside leucodepletion filters. Med J ArmedForces India 66(2):142–146

    CAS  Google Scholar 

  11. Fujii Y (2016) The potential of the novel leukocyte removal filter in cardiopulmonary bypass. Expert Rev Med Devices 13(1):5–14

    Article  CAS  PubMed  Google Scholar 

  12. Bekeschus S, Kolata J, Winterbourn C, Kramer A, Turner R, Weltmann KD, Bröker B, Masur K (2014) Hydrogen peroxide: a central player in physical plasma-induced oxidative stress in human blood cells. Free Radic Res 48(5):542–549

    Article  CAS  PubMed  Google Scholar 

  13. Burton GW, Ingold KU, Thompson KE (1981) An improved procedure for the isolation of ghost membranes from human red blood cells. Lipids 16(12):946

    Article  CAS  PubMed  Google Scholar 

  14. Puren AJ, Fantuzzi G, Gu Y, Su MS, Dinarello CA (1998) Interleukin-18 (IFNgamma-inducing factor) induces IL-8 and IL-1beta via TNFalpha production from non-CD14+ human blood mononuclear cells. J Clin Investig 101(3):711–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schindler R, Mancilla J, Endres S, Ghorbani R, Clark SC, Dinarello CA. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF

  16. Meyer T, Zehnter I, Hofmann B, Zaisserer J, Burkhart J, Rapp S et al (2005) Filter buffy coats (FBC): a source of peripheral bloodleukocytes recovered from leukocyte depletion filters. J Immunol Methods 307(1–2):150–166

    Article  CAS  PubMed  Google Scholar 

  17. Sasani N, Roghanian R, Emtiazi G, Jalali SM, Zarif MN, Aghaie A (2020) Design and introduction of a rational mechanical eluting system for leukocyte recovery from leukoreduction filters: a cell differential approach. Transfus Clin Biol 27(3):172–178

    Article  CAS  PubMed  Google Scholar 

  18. Wegehaupt AK, Roufs EK, Hewitt CR, Killian ML, Gorbatenko O, Anderson CM, Killian MS (2017) Recovery and assessment of leukocytes from LR express filters. Biologicals 1(49):15–22

    Article  Google Scholar 

  19. Wegehaupt AK, Roufs EK, Hewitt CR, Killian ML, Gorbatenko O, Anderson CM et al (2017) Recovery and assessment ofleukocytes from LR express filters. Biologicals 49:15–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peytour Y, Villacreces A, Chevaleyre J, Ivanovic Z, Praloran V (2013) Discarded leukoreduction filters: A new source of stem cells for research, cell engineering, and therapy? Stem Cell Res 11(2):736–742

    Article  PubMed  Google Scholar 

  21. Teleron AA, Carlson B, Young PP (2005) Blood donor white blood cell reduction filters as a source of human peripheral blood-derived endothelial progenitor cells. Transfusion 45(1):21–25

    Article  PubMed  Google Scholar 

  22. Weidinger TM, Keller AK, Weiss D, Zimmermann R, Eckstein R, Strasser EF (2011) Peripheral blood mononuclear cells obtained from leukoreduction system chambers show better viability than those from leukapheresis. Transfusion 51(9):2047–2049

    Article  PubMed  Google Scholar 

  23. Dietz AB, Bulur PA, Emery RL, Winters JL, Epps DE, Zubair AC et al (2006) A novel source of viable peripheral blood mononuclear cells from leukoreduction system chambers. Transfusion 46(12):2083–2089

    Article  CAS  PubMed  Google Scholar 

  24. Izquierdo N, Naranjo M, Fernández M, Cos J, Massuet L, Martínez-Picado J et al (2003) Leukocyte reduction filters: analternative source of peripheral blood mononuclear cells. Inmunología 22(3):255–262

    Google Scholar 

  25. Néron S, Dussault N, Racine C (2006) Whole-blood leukoreduction filters are a source for cryopreserved cells for phenotypic and functional investigations on peripheral blood lymphocytes. Transfusion 46(4):537–544

    Article  PubMed  Google Scholar 

  26. Ferdowsi S, Pourfathollah AA (2019) Leukocyte reduction filters: a source of peripheral blood leukocytes for research and drug production. Glob J Transfus Med 4:122–123

    Google Scholar 

  27. Ivanovic Z, Duchez P, Morgan DA, Hermitte F, Lafarge X, Chevaleyre J et al (2006) Whole-blood leukodepletion filters as a source of CD34+ progenitors potentially usable in cell therapy. Transfusion 46(1):118–125

    Article  PubMed  Google Scholar 

  28. Longley RE, Stewart D (1989) Recovery of functional human lymphocytes from leuko-trap filters. J Immunol Methods 121:33–38

    Article  CAS  PubMed  Google Scholar 

  29. Rashidbaigi A, Liao M-J, Hua J, Sidhu M (1999) Recovery of functional human leuko-cytes from recycled filters. Google Patents [US Patent 5,989,441]

  30. Izquierdo N, Naranjo M, Fernández M, Cos J, Massuet L, Martínez-Picado J et al (2003) Leukocyte reduction filters: an alternative source of peripheral blood mononu-clear cells. Inmunología 22:255–262

    Google Scholar 

  31. Bruil A, Beugeling T, Feijen J, van Aken WG (1995) The mechanisms of leukocyte removal by filtration. Transfus Med Rev 9(2):145–166

    Article  CAS  PubMed  Google Scholar 

  32. Dzik S (1993) Leukodepletion blood filters: filter design and mechanisms of leukocyte removal. Transfus Med Rev 7(2):65–77

    Article  CAS  PubMed  Google Scholar 

  33. Kjeldsen- Kragh J, Golebiowska E (2002) Back- priming of the RCM1™ leucocyte- reduction filter: consequences for filtration efficacy. Vox Sang 82(3):127–130

    Article  CAS  PubMed  Google Scholar 

  34. Alici E, Sutlu T, Björkstrand B, Gilljam M, Stellan B, Nahi H, Quezada HC, Gahrton G, Ljunggren HG, Dilber MS (2008) Autologous antitumor activity by NK cells expanded from myeloma patients using GMP-compliant components. Blood J Am Soc Hematol 111(6):3155–3162

    CAS  Google Scholar 

  35. Destrampe E, Schlueter AJ (2021) Successful autologous peripheral blood stem cell collection using large volume leukapheresis in patients with very low or undetectable peripheral blood CD34+ progenitor cells. Transfus Apheres Sci 60(4):103170

    Article  Google Scholar 

  36. Wilde CG, Griffith JE, Marra MN, Snable JL, Scott RW (1989) Purification and characterization of human neutrophil peptide 4, a novel member of the defensin family. J Biol Chem 264(19):11200–11203

    Article  CAS  PubMed  Google Scholar 

  37. Strasser EF, Eckstein R (2010) Optimization of leukocyte collection and monocyte isolation for dendritic cell culture. Transfus Med Rev 24(2):130–139

    Article  PubMed  Google Scholar 

  38. Larson MC, Hogg N, Hillery CA (2021) Centrifugation removes a population of large vesicles, or “macroparticles”, intermediate in size to RBCs and microvesicles. Int J Mol Sci 22(3):1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wright DG, Kauffmann JC, Chusid MJ, Gallin JI (1975) Functional abnormalities of human neutrophils collected by continuous flow filtration leukapheresis. 901–911

Download references

Acknowledgments

The study was financially and materially supported by the High Institute for Research and Education in Transfusion Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Balagholi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malati, Z.A., Pourfathollah, A.A., Dabbaghi, R. et al. Evaluation of a New Method of Leukocyte Extractions from the Leukoreduction Filter. Indian J Hematol Blood Transfus 39, 478–486 (2023). https://doi.org/10.1007/s12288-022-01618-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12288-022-01618-x

Keywords

Navigation