Skip to main content

Prognostic Value of Serum Soluble Klotho and Fibroblast Growth Factor-23 in Multiple Myeloma Patients

Abstract

Multiple myeloma is the plasma cell malignancy in which bone involvement is common. The Fibroblast growth factor-23 (FGF-23)/Klotho pathway plays a major role in mineral metabolism that FGF-23 is mineralization inhibitory. Klotho also has anti-apoptotic and anti-tumor effects by acting as a tumor suppressor gene. There is a negative correlation between serum FGF-23 and serum soluble Klotho (sKL) levels. As such, there can be considerable interest in investigating sKL and FGF-23 as a biomarker in patients with MM. We used an enzyme-linked immunosorbent assay to measure serum FGF-23 and sKL levels in 55 newly diagnosed MM patients and 23 healthy controls. We determined significantly high serum FGF-23 and low serum sKL levels in MM patients when compared to healthy controls. Serum sKL levels correlated negatively with a p53 positive mutation status, with high ISS, elevated lactate dehydrogenase, C-reactive protein, Beta-2 microglobulin levels. Serum FGF-23 levels are associated negatively with serum phosphorus and positively only light chains and p53 mutation. Patients with high serum FGF-23 levels had significantly shorter median overall survival than those with low serum FGF-23 levels (p = 0.008). Additionally, low sKL levels were related to decreased overall survival, but they didn’t reach statistically significant (p = 0.072). There is a significant correlation between low serum sKL, high FGF-23 levels, and known prognostic factors in MM patients. We conclude that low sKL and high FGF-23 levels are a probable prognostic biomarker for poor MM patient outcomes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Kyle RA, Rajkumar SV (2009) Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia 23(1):3–9

    CAS  Article  Google Scholar 

  2. Roodman GD (2010) Pathogenesis of myeloma bone disease. J Cell Biochem 109:283–91

    CAS  PubMed  Google Scholar 

  3. Terpos E, Morgan G, Dimopoulos MA, Drake MT, Lentzsch S, Raje N et al (2013) International Myeloma working group recommendations for the treatment of multiple myeloma-related bone disease. J Clin Oncol 31:2347–2357

    CAS  Article  Google Scholar 

  4. Hansford BG, Silbermann R (2018) Advanced imaging of multiple myeloma bone disease. Front Endocrinol (Lausanne) 9:436

    Article  Google Scholar 

  5. Saad F, Lipton A, Cook R, Chen YM, Smith M, Coleman R (2007) Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer 110:1860–1867

    Article  Google Scholar 

  6. Kawai M (2016) The FGF23/Klotho axis in the regulation of mineral and metabolic homeostasis. Horm Mol Biol Clin Invest 28:55–67

    CAS  Google Scholar 

  7. Erben RG (2018) α-Klotho’s effects on mineral homeostasis are fibroblast growth factor-23 dependent. Curr Opin Nephrol Hypertens 27:229–235

    CAS  Article  Google Scholar 

  8. Komaba H, Lanske B (2018) Role of Klotho in bone and implication for CKD. Curr Opin Nephrol Hypertens 27:298–304

    CAS  Article  Google Scholar 

  9. Erben RG, Andrukhova O (2017) FGF23-Klotho signaling axis in the kidney. Bone 100:62–68

    CAS  Article  Google Scholar 

  10. Mansinho A, Ferreira AR, Casimiro S, Alho I, Vendrell I, Costa AL et al (2019) Levels of circulating fibroblast growth factor 23 (FGF-23) and prognosis in cancer patients with bone metastases. Int J Mol Sci 20:695

    CAS  Article  Google Scholar 

  11. Xu Y, Sun Z (2015) Molecular basis of klotho: from gene to function in aging. Endocr Rev 36:174–193

    CAS  Article  Google Scholar 

  12. Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y (1998) Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun 242:626–630

    CAS  Article  Google Scholar 

  13. Shiraki-Iida T, Aizawa H, Matsumura Y, Sekine S, Iida A, Anazawa H et al (1998) Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett 424:6–10

    CAS  Article  Google Scholar 

  14. Dalton GD, Xie J, An SW, Huang CL (2017) New insights into the mechanism of action of soluble klotho. Front Endocrinol (Lausanne) 8:323

    Article  Google Scholar 

  15. Lu X, Hu MC (2017) Klotho/FGF23 axis in chronic kidney disease and cardiovascular disease. Kidney Dis (Basel) 3(1):15–23

    Article  Google Scholar 

  16. Wang Q, Su W, Shen Z, Wang R (2018) Correlation between soluble α-klotho and renal function in patients with chronic kidney disease: a review and meta-analysis. Biomed Res Int 2018:9481475

    PubMed  PubMed Central  Google Scholar 

  17. Shimamura Y, Hamada K, Inoue K et al (2012) Serum levels of soluble secreted α-Klotho are decreased in the early stages of chronic kidney disease, making it a probable novel biomarker for early diagnosis. Clin Exp Nephrol 16:722–729

    CAS  Article  Google Scholar 

  18. Koyama D, Sato Y, Aizawa M, Maki T, Kurosawa M, Kuro-o M, Furukawa Y (2015) Soluble αKlotho as a candidate for the biomarker of aging. Biochem Biophys Res Commun 467:1019–1025

    CAS  Article  Google Scholar 

  19. Xie B, Zhou J, Yuan L, Ren F, Liu DC, Li Q, Shu G (2013) Epigenetic silencing of Klotho expression correlates with poor prognosis of human hepatocellular carcinoma. Hum Pathol 44:795–801

    CAS  Article  Google Scholar 

  20. Usuda J, Ichinose S, Ishizumi T, Ohtani K, Inoue T, Saji H, Kakihana M, Kajiwara N, Uchida O, Nomura M, Tsutsui H, Ohira T, Ikeda N (2011) Klotho is a novel biomarker for good survival in resected large cell neuroendocrine carcinoma of the lung. Lung Cancer 72:355–359

    Article  Google Scholar 

  21. Zhou X, Fang X, Jiang Y, Geng L, Li X, Li Y et al (2017) Klotho, an anti-aging gene, acts as a tumor suppressor and inhibitor of IGF-1R signaling in diffuse large B cell lymphoma. J Hematol Oncol 10:37

    Article  Google Scholar 

  22. Zhou X, Zhang Y, Li Y, Xu Y, Zhang L, Li Y et al (2017) Klotho suppresses tumor progression via inhibiting IGF-1R signaling in T-cell lymphoma. Oncol Rep 38:967–974

    CAS  Article  Google Scholar 

  23. Stewart I, Roddie C, Gill A, Clarkson A, Mirams M, Coyle L et al (2006) Elevated serum FGF23 concentrations in plasma cell dyscrasias. Bone 39:369–376

    CAS  Article  Google Scholar 

  24. Suvannasankha A, Tompkins DR, Edwards DF, Petyaykina KV, Crean CD, Fournier PG et al (2015) FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells. Oncotarget 6:19647–19660

    Article  Google Scholar 

  25. International Myeloma Working Group (2003) Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 121(5):749–757

    Article  Google Scholar 

  26. Greipp PR, San Miguel J, Durie BG (2005) International staging system for multiple myeloma. J Clin Oncol 23:3412–3420

    Article  Google Scholar 

  27. Durie BGM, Harousseau J-L, Miguel JS, Blade J, Barlogie B, Anderson K et al (2006) International uniform response criteria for multiple myeloma. Leukemia 20:1467–1473

    CAS  Article  Google Scholar 

  28. Kuro-O M (2018) Molecular mechanisms underlying accelerated aging by defects in the FGF23-klotho system. Int J Nephrol 2018:9679841

    Article  Google Scholar 

  29. Chong WH, Molinolo AA, Chen CC, Collins MT (2011) Tumor-induced osteomalacia. Endocr Relat Cancer 18:R53-77

    CAS  Article  Google Scholar 

  30. Barta V, Lalkiya N, Phan H, Miller I, Sachde M (2018) Fibroblast growth factor 23-secreting pancreaticobiliary malignancy. J Onco Nephrol 2(1):21–23

    Article  Google Scholar 

  31. Mencke R, Olauson H, Hillebrands JL (2017) Effects of Klotho on fibrosis and cancer: a renal focus on mechanisms and therapeutic strategies. Adv Drug Deliv Rev 121:85–100

    CAS  Article  Google Scholar 

  32. Xuan NT, Hai NV (2018) Changes in expression of klotho affect physiological processes, diseases, and cancer. Iran J Basic Med Sci 21:3–8

    PubMed  PubMed Central  Google Scholar 

  33. Yamazaki Y, Imura A, Urakawa I, Shimada T, Murakami J, Aono Y et al (2010) Establishment of sandwich ELISA for soluble alpha-Klotho measurement: age-dependent change of soluble alpha-Klotho levels in healthy subject. Biochem Biophys Res Commun 398:513–518

    CAS  Article  Google Scholar 

  34. Rajkumar SV (2018) Multiple myeloma: 2018 update on diagnosis, risk-stratification, and management. Am J Hematol 93:981–1114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Terzi Demirsoy.

Ethics declarations

Conflict of ınterest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Terzi Demirsoy, E., Mehtap, O., Birtas Atesoglu, E. et al. Prognostic Value of Serum Soluble Klotho and Fibroblast Growth Factor-23 in Multiple Myeloma Patients. Indian J Hematol Blood Transfus 38, 454–463 (2022). https://doi.org/10.1007/s12288-021-01470-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12288-021-01470-5

Keywords

  • Multiple myeloma
  • Klotho
  • Fibroblast growth factor (FGF)-23
  • Survival outcomes