Skip to main content

Advertisement

Log in

Recent Advances in Molecular Diagnosis and Prognosis of Childhood B Cell Lineage Acute Lymphoblastic Leukemia (B-ALL)

  • Review Article
  • Published:
Indian Journal of Hematology and Blood Transfusion Aims and scope Submit manuscript

Abstract

B cell lineage acute lymphoblastic leukemia is the most common leukemia occurring in children and young adults and is the leading cause of cancer related deaths. The 5 year overall survival outcome in children with B-ALL has improved significantly in the last few decades. In the past, the discovery of various genetic alterations and targeted therapy have played a major role in decreasing disease-related deaths. In addition, numerous advances in the pathogenesis of B-ALL have been found which have provided better understanding of the genes involved in disease biology with respect to diagnostic and prognostic implications. Present review will summarize current understanding of risk stratification, genetic factors including cytogenetics in diagnosis and prognosis of B-ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mullighan CG (2012) The molecular genetic makeup of acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2012:389–396

    PubMed  Google Scholar 

  2. Inaba H, Greaves M, Mullighan CG (2013) Acute lymphoblastic leukaemia. The Lancet 381(9881):1943–1955

    Google Scholar 

  3. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R et al (2016) The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127(20):2375–2390

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hunger SP, Mullighan CG (2015) Acute lymphoblastic leukemia in children. N Engl J Med 373(16):1541–1552

    CAS  PubMed  Google Scholar 

  5. Secker-Walker LM, Lawler SD, Hardisty RM (1978) Prognostic implications of chromosomal findings in acute lymphoblastic leukaemia at diagnosis. Br Med J 2(6151):1529–1530

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dastugue N, Suciu S, Plat G, Speleman F, Cave H, Girard S et al (2013) Hyperdiploidy with 58–66 chromosomes in childhood B-acute lymphoblastic leukemia is highly curable: 58951 CLG-EORTC results. Blood 121(13):2415–2423

    CAS  PubMed  Google Scholar 

  7. Paulsson K, Johansson B (2009) High hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosom Cancer 48(8):637–660

    CAS  PubMed  Google Scholar 

  8. Carroll WL (2013) Safety in numbers: hyperdiploidy and prognosis. Blood 121(13):2374–2376

    CAS  PubMed  Google Scholar 

  9. Moorman AV, Chilton L, Wilkinson J, Ensor HM, Bown N, Proctor SJ (2010) A population-based cytogenetic study of adults with acute lymphoblastic leukemia. Blood 115(2):206–214

    CAS  PubMed  Google Scholar 

  10. Nachman JB, Heerema NA, Sather H, Camitta B, Forestier E, Harrison CJ et al (2007) Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood 110(4):1112–1115

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Raimondi SC, Zhou Y, Mathew S, Shurtleff SA, Sandlund JT, Rivera GK et al (2003) Reassessment of the prognostic significance of hypodiploidy in pediatric patients with acute lymphoblastic leukemia. Cancer 98(12):2715–2722

    PubMed  Google Scholar 

  12. Harrison CJ, Moorman AV, Broadfield ZJ, Cheung KL, Harris RL, Reza Jalali G et al (2004) Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. Br J Haematol 125(5):552–559

    PubMed  Google Scholar 

  13. Safavi S, Paulsson K (2017) Near-haploid and low-hypodiploid acute lymphoblastic leukemia: two distinct subtypes with consistently poor prognosis. Blood 129(4):420–423

    CAS  PubMed  Google Scholar 

  14. Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, Ding L et al (2013) The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet 45(3):242–252

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pui CH, Williams DL, Raimondi SC, Rivera GK, Look AT, Dodge RK et al (1987) Hypodiploidy is associated with a poor prognosis in childhood acute lymphoblastic leukemia. Blood 70(1):247–253

    CAS  PubMed  Google Scholar 

  16. Nowell PC (1960) A minute chromosome in human chronic granulocytic leukemia. Science 142:1497

    Google Scholar 

  17. Eisenberg A, Silver R, Soper L, Arlin Z, Coleman M, Bernhardt B et al (1988) The location of breakpoints within the breakpoint cluster region (bcr) of chromosome 22 in chronic myeloid leukemia. Leukemia 2(10):642–647

    CAS  PubMed  Google Scholar 

  18. Reckel S, Hantschel O (2017) Bcr-Abl: one kinase, two isoforms, two diseases. Oncotarget [Internet]. 8(45). Available from: https://www.oncotarget.com/fulltext/20874. Cited 8 Jun 2018

  19. Junmei Z, Fengkuan Y, Yongping S, Baijun F, Yuzhang L, Lina L et al (2015) Coexistence of P190 and P210 BCR/ABL transcripts in chronic myeloid leukemia blast crisis resistant to imatinib. SpringerPlus [Internet]. 4(1). Available from: http://www.springerplus.com/content/4/1/170. Cited 8 Jun 2018

  20. Gupta SK, Bakhshi S, Kumar L, Kamal VK, Kumar R (2017) Gene copy number alteration profile and its clinical correlation in B cell acute lymphoblastic leukemia. Leukemia Lymphoma 58(2):333–342

    PubMed  Google Scholar 

  21. Singh M, Bhatia P, Trehan A, Varma N, Sachdeva MS, Bansal D et al (2018) High frequency of intermediate and poor risk copy number abnormalities in pediatric cohort of B-ALL correlate with high MRD post induction. Leuk Res 66:79–84

    PubMed  Google Scholar 

  22. Siddaiahgari S, Awaghad M, Latha M (2015) Clinical, immunophenotype and cytogenetic profile of acute lymphoblastic leukemia in children at tertiary health care centre in India. Muller J Med Sci Res 6(2):112

    Google Scholar 

  23. Pui C-H, Robison LL, Look AT (2008) Acute lymphoblastic leukaemia. The Lancet 371(9617):1030–1043

    CAS  Google Scholar 

  24. Wiemels JL, Cazzaniga G, Daniotti M, Eden OB, Addison GM, Masera G et al (1999) Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 354(9189):1499–1503

    CAS  PubMed  Google Scholar 

  25. Pui C-H, Carroll WL, Meshinchi S, Arceci RJ (2011) Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol 29(5):551–565

    PubMed  Google Scholar 

  26. Amare PSK, Jain H, Kabre S, Deshpande Y, Pawar P, Banavali S et al (2016) Cytogenetic Profile in 7209 Indian patients with de novo acute leukemia: a single centre study from India. J. Cancer Ther 07(07):530–544

    Google Scholar 

  27. Ziemin-van der Poel S, McCabe NR, Gill HJ, Espinosa R, Patel Y, Harden A et al (1991) Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci USA 88(23):10735–10739

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20):2391–2405

    CAS  PubMed  Google Scholar 

  29. Safavi M, Safaei A, Lotfi M (2018) A rare variant of t(17;19) in a case of Philadelphia positive adult acute lymphoblastic leukemia presenting with disseminated intravascular coagulation. Blood Res 53(1):92

    PubMed  PubMed Central  Google Scholar 

  30. On behalf of the Ponte di Legno International Workshop in Childhood Acute Lymphoblastic Leukemia, Harrison CJ, Moorman AV, Schwab C, Carroll AJ, Raetz EA et al (2014) An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome. Leukemia 28(5):1015–1021

    Google Scholar 

  31. Moorman AV, Ensor HM, Richards SM, Chilton L, Schwab C, Kinsey SE et al (2010) Prognostic effect of chromosomal abnormalities in childhood B cell precursor acute lymphoblastic leukaemia: results from the UK Medical Research Council ALL97/99 randomised trial. Lancet Oncol 11(5):429–438

    CAS  PubMed  Google Scholar 

  32. Moorman AV, Richards SM, Robinson HM, Strefford JC, Gibson BES, Kinsey SE et al (2007) Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood 109(6):2327–2330

    CAS  PubMed  Google Scholar 

  33. Rand V, Parker H, Russell LJ, Schwab C, Ensor H, Irving J et al (2011) Genomic characterization implicates iAMP21 as a likely primary genetic event in childhood B cell precursor acute lymphoblastic leukemia. Blood 117(25):6848–6855

    CAS  PubMed  Google Scholar 

  34. Robinson HM, Harrison CJ, Moorman AV, Chudoba I, Strefford JC (2007) Intrachromosomal amplification of chromosome 21 (iAMP21) may arise from a breakage–fusion–bridge cycle. Genes Chromosom Cancer 46(4):318–326

    CAS  PubMed  Google Scholar 

  35. Li Y, Schwab C, Ryan SL, Papaemmanuil E, Robinson HM, Jacobs P et al (2014) Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508(7494):98–102

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang Y-L, Pei D et al (2014) Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 371(11):1005–1015

    PubMed  PubMed Central  Google Scholar 

  37. Tran TH, Loh ML (2016) Ph-like acute lymphoblastic leukemia. Hematology 2016(1):561–566

    PubMed  PubMed Central  Google Scholar 

  38. Roberts KG, Gu Z, Payne-Turner D, McCastlain K, Harvey RC, Chen I-M et al (2017) High frequency and poor outcome of Philadelphia chromosome-like acute lymphoblastic leukemia in adults. J Clin Oncol 35(4):394–401

    PubMed  Google Scholar 

  39. Reshmi SC, Harvey RC, Roberts KG, Stonerock E, Smith A, Jenkins H et al (2017) Targetable kinase gene fusions in high risk B-ALL: a study from the Children’s Oncology Group. Blood. blood-2016–12–758979.

  40. Kastner P, Dupuis A, Gaub M-P, Herbrecht R, Lutz P, Chan S (2013) Function of Ikaros as a tumor suppressor in B cell acute lymphoblastic leukemia. Am J Blood Res 3(1):1–13

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tijchon E, Havinga J, van Leeuwen FN, Scheijen B (2013) B-lineage transcription factors and cooperating gene lesions required for leukemia development. Leukemia 27(3):541–552

    CAS  PubMed  Google Scholar 

  42. van der Veer A, Zaliova M, Mottadelli F, De Lorenzo P, te Kronnie G, Harrison CJ et al (2014) IKZF1 status as a prognostic feature in BCR-ABL1-positive childhood ALL. Blood 123(11):1691–1698

    PubMed  Google Scholar 

  43. Mi J-Q, Wang X, Yao Y, Lu H-J, Jiang X-X, Zhou J-F et al (2012) Newly diagnosed acute lymphoblastic leukemia in China (II): prognosis related to genetic abnormalities in a series of 1091 cases. Leukemia 26(7):1507–1516

    CAS  PubMed  Google Scholar 

  44. Iacobucci I, Storlazzi CT, Cilloni D, Lonetti A, Ottaviani E, Soverini S et al (2009) Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell’Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood 114(10):2159–2167

    CAS  PubMed  Google Scholar 

  45. Yeoh AEJ, Lu Y, Chin WHN, Chiew EKH, Lim EH, Li Z et al (2018) Intensifying treatment of childhood B lymphoblastic leukemia with IKZF1 deletion reduces relapse and improves overall survival: results of Malaysia–Singapore ALL 2010 study. J Clin Oncol 36(26):2726–2735

    CAS  PubMed  Google Scholar 

  46. Harvey RC, Mullighan CG, Chen I-M, Wharton W, Mikhail FM, Carroll AJ et al (2010) Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood 115(26):5312–5321

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Russell LJ, Capasso M, Vater I, Akasaka T, Bernard OA, Calasanz MJ et al (2009) Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B cell precursor acute lymphoblastic leukemia. Blood 114(13):2688–2698

    CAS  PubMed  Google Scholar 

  48. Yoda A, Yoda Y, Chiaretti S, Bar-Natan M, Mani K, Rodig SJ et al (2010) Functional screening identifies CRLF2 in precursor B cell acute lymphoblastic leukemia. Proc Natl Acad Sci 107(1):252–257

    CAS  PubMed  Google Scholar 

  49. Usvasalo A, Savola S, Räty R, Vettenranta K, Harila-Saari A, Koistinen P et al (2008) CDKN2A deletions in acute lymphoblastic leukemia of adolescents and young adults: an array CGH study. Leuk Res 32(8):1228–1235

    CAS  PubMed  Google Scholar 

  50. Mirebeau D, Acquaviva C, Suciu S, Bertin R, Dastugue N, Robert A et al (2006) The prognostic significance of CDKN2A, CDKN2B and MTAP inactivation in B-lineage acute lymphoblastic leukemia of childhood. Results of the EORTC studies 58881 and 58951. Haematologica 91(7):881–885

    CAS  PubMed  Google Scholar 

  51. Bertin R, Acquaviva C, Mirebeau D, Guidal-Giroux C, Vilmer E, Cavé H (2003) CDKN2A, CDKN2B, and MTAP gene dosage permits precise characterization of mono- and bi-allelic 9p21 deletions in childhood acute lymphoblastic leukemia: CDKN2A, CDKN2B, and MTAP Dosage in Leukemia. Genes Chromosom Cancer 37(1):44–57

    CAS  PubMed  Google Scholar 

  52. Heerema NA, Sather HN, Sensel MG, Liu-Mares W, Lange BJ, Bostrom BC et al (1999) Association of chromosome arm 9p abnormalities with adverse risk in childhood acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood 94(5):1537–1544

    CAS  PubMed  Google Scholar 

  53. Kasner MT, Wilde L, Keiffer G, Palmisiano ND, Calabretta B (2019) A phase I trial of palbociclib in combination with dexamethasone in relapsed or refractory adult B cell acute lymphoblastic leukemia (ALL). J Clin Oncol 37(15):TPS7065

    Google Scholar 

  54. Zhou Y, You MJ, Young KH, Lin P, Lu G, Medeiros LJ et al (2012) Advances in the molecular pathobiology of B lymphoblastic leukemia. Hum Pathol 43(9):1347–1362

    CAS  PubMed  Google Scholar 

  55. Cobaleda C, Schebesta A, Delogu A, Busslinger M (2007) Pax5: the guardian of B cell identity and function. Nat Immunol 8(5):463–470

    CAS  PubMed  Google Scholar 

  56. Öfverholm I, Tran AN, Heyman M, Zachariadis V, Nordenskjöld M, Nordgren A et al (2013) Impact of IKZF1 deletions and PAX5 amplifications in pediatric B cell precursor ALL treated according to NOPHO protocols. Leukemia 27(9):1936–1939

    PubMed  Google Scholar 

  57. Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2(2):103–112

    CAS  PubMed  Google Scholar 

  58. Studniak E, Maloney E, Ociepa T, Urasiński T, Skonieczka K, Haus O et al (2013) Allelic loss of selected tumor suppressor genes in acute lymphoblastic leukemia in children. Pol J Pathol 2:121–128

    Google Scholar 

  59. Waanders E, Scheijen B, van der Meer LT, van Reijmersdal SV, van Emst L, Kroeze Y et al (2012) The origin and nature of tightly clustered BTG1 deletions in precursor B cell acute lymphoblastic leukemia support a model of multiclonal evolution. PLoS Genet 8(2):e1002533

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Schwab C, Ryan SL, Chilton L, Elliott A, Murray J, Richardson S et al (2016) EBF1-PDGFRB fusion in pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL): genetic profile and clinical implications. Blood 127(18):2214–2218

    CAS  PubMed  Google Scholar 

  61. Nunez R (2001) DNA measurement and cell cycle analysis by flow cytometry. Curr Issues Mol Biol 3(3):67–70

    CAS  PubMed  Google Scholar 

  62. Parihar M, Singh MK, Islam R, Saha D, Mishra DK, Saha V et al (2018) A triple-probe FISH screening strategy for risk-stratified therapy of acute lymphoblastic leukaemia in low-resource settings. Pediatr Blood Cancer 65(12):e27366

    PubMed  PubMed Central  Google Scholar 

  63. Campana D (2009) Minimal residual disease in acute lymphoblastic leukemia. Semin Hematol 46(1):100–106

    PubMed  PubMed Central  Google Scholar 

  64. Brüggemann M, Kotrova M (2017) Minimal residual disease in adult ALL: technical aspects and implications for correct clinical interpretation. Blood Adv 1(25):2456–2466

    PubMed  PubMed Central  Google Scholar 

  65. Terwilliger T, Abdul-Hay M (2017) Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J 7(6):e577

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mathisen MS, O’Brien S, Thomas D, Cortes J, Kantarjian H, Ravandi F (2011) Role of tyrosine kinase inhibitors in the management of Philadelphia chromosome-positive acute lymphoblastic leukemia. Curr Hematol Malig Rep 6(3):187–194

    PubMed  PubMed Central  Google Scholar 

  67. Leoni V, Biondi A (2015) Tyrosine kinase inhibitors in BCR-ABL positive acute lymphoblastic leukemia. Haematologica 100(3):295–299

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Giles FJ, Swords RT, Nagler A, Hochhaus A, Ottmann OG, Rizzieri DA et al (2013) MK-0457, an Aurora kinase and BCR–ABL inhibitor, is active in patients with BCR–ABL T315I leukemia. Leukemia 27(1):113–117

    CAS  PubMed  Google Scholar 

  69. Chiarini F, Lonetti A, Evangelisti C, Buontempo F, Orsini E, Evangelisti C et al (2016) Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: from biology to therapeutic targeting. Biochim Biophys Acta (BBA) Mol Cell Res 1863(3):449–463

    CAS  Google Scholar 

  70. Ling Y, Xie Q, Zhang Z, Zhang H (2018) Protein kinase inhibitors for acute leukemia. Biomarker Research [Internet]. 6(1). Available from: https://biomarkerres.biomedcentral.com/articles/10.1186/s40364-018-0123-1. Cited 17 Dec 2019

  71. Lionel D, Christophe L, Marc A, Jean-Luc C (2006) Oral mucositis induced by anticancer treatments: physiopathology and treatments. Ther Clin Risk Manag 2(2):159–168

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Du X-L, Chen Q (2013) Recent advancements of bortezomib in acute lymphocytic leukemia treatment. Acta Haematol 129(4):207–214

    CAS  PubMed  Google Scholar 

  73. Takahashi K, Inukai T, Imamura T, Yano M, Tomoyasu C, Lucas DM et al (2017) Anti-leukemic activity of bortezomib and carfilzomib on B cell precursor ALL cell lines. PLoS ONE 12(12):e0188680

    PubMed  PubMed Central  Google Scholar 

  74. Degryse S, Cools J (2015) JAK kinase inhibitors for the treatment of acute lymphoblastic leukemia. Journal of Hematology & Oncology [Internet]. 8(1). Available from: https://www.jhoonline.org/content/8/1/91. Cited 17 Jun 2018

  75. Harrison C, Vannucchi AM (2012) Ruxolitinib: a potent and selective Janus kinase 1 and 2 inhibitor in patients with myelofibrosis. An update for clinicians. Ther Adv Hematol 3(6):341–354

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Novel HD, Leukemia A-B (2011) Hematology 2011(1):243–249

    Google Scholar 

  77. Levato L, Molica S (2018) Rituximab in the management of acute lymphoblastic leukemia. Expert Opin Biol Ther 18(2):221–226

    CAS  PubMed  Google Scholar 

  78. Raetz EA, Cairo MS, Borowitz MJ, Lu X, Devidas M, Reid JM et al (2015) Re-induction chemoimmunotherapy with epratuzumab in relapsed acute lymphoblastic leukemia (ALL): Phase II results from Children’s Oncology Group (COG) study ADVL04P2: re-Induction With Epratuzumab in Relapsed ALL. Pediatr Blood Cancer 62(7):1171–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hathaway L, Sen JM, Keng M (2018) Impact of blinatumomab on patient outcomes in relapsed/refractory acute lymphoblastic leukemia: evidence to date. Patient Relat Outcome Measures 9:329–337

    Google Scholar 

  80. Mummery A, Narendran A, Lee K-Y (2011) Targeting epigenetics through histone deacetylase inhibitors in acute lymphoblastic leukemia. Curr Cancer Drug Targets 11(7):882–893

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Masetti R, Serravalle S, Biagi C, Pession A (2011) The role of HDACs inhibitors in childhood and adolescence acute leukemias. J Biomed Biotechnol 2011:1–9

    Google Scholar 

  82. Jing B, Jin J, Xiang R, Liu M, Yang L, Tong Y, et al (2018) Vorinostat and quinacrine have synergistic effects in T cell acute lymphoblastic leukemia through reactive oxygen species increase and mitophagy inhibition. Cell Death Disease [Internet]. 9(6). Available from: https://www.nature.com/articles/s41419-018-0679-6. Cited 17 Dec 2019

  83. Ravandi F, Gandhi V (2006) Novel purine nucleoside analogues for T cell-lineage acute lymphoblastic leukaemia and lymphoma. Expert Opin Investig Drugs 15(12):1601–1613

    CAS  PubMed  Google Scholar 

  84. Robak P, Robak T (2013) Older and new purine nucleoside analogs for patients with acute leukemias. Cancer Treat Rev 39(8):851–861

    CAS  PubMed  Google Scholar 

  85. Bonate PL, Arthaud L, Cantrell WR, Stephenson K, Secrist JA, Weitman S (2006) Discovery and development of clofarabine: a nucleoside analogue for treating cancer. Nat Rev Drug Discov 5(10):855–863

    CAS  PubMed  Google Scholar 

  86. Kadia TM, Gandhi V (2017) Nelarabine in the treatment of pediatric and adult patients with T cell acute lymphoblastic leukemia and lymphoma. Expert Rev Hematol 10(1):1–8

    CAS  PubMed  Google Scholar 

  87. Golde TE, Koo EH, Felsenstein KM, Osborne BA, Miele L (2013) γ-Secretase inhibitors and modulators. Biochim Biophys Acta (BBA) Biomembr 1828(12):2898–2907

    CAS  Google Scholar 

  88. Greene LM, Nathwani SM, Zisterer DM (2016) Inhibition of γ-secretase activity synergistically enhances tumour necrosis factor-related apoptosis-inducing ligand induced apoptosis in T cell acute lymphoblastic leukemia cells via upregulation of death receptor 5. Oncol Lett 12(4):2900–2905

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Evangelisti C, Evangelisti C, Chiarini F, Lonetti A, Buontempo F, Bressanin D et al (2014) Therapeutic potential of targeting mTOR in T cell acute lymphoblastic leukemia (Review). Int J Oncol 45(3):909–918

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The name of the department(s) and institution(s) to which the work should be attributed: Department of Laboratory sciences and Molecular medicine, Army Hospital (R&R), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tathagata Chatterjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, M., Seth, R. & Chatterjee, T. Recent Advances in Molecular Diagnosis and Prognosis of Childhood B Cell Lineage Acute Lymphoblastic Leukemia (B-ALL). Indian J Hematol Blood Transfus 37, 10–20 (2021). https://doi.org/10.1007/s12288-020-01295-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12288-020-01295-8

Keywords

Navigation