Skip to main content

Advertisement

Log in

Heterogeneity of Mesenchymal Stromal Cells in Myelodysplastic Syndrome-with Multilineage Dysplasia (MDS-MLD)

  • Original Article
  • Published:
Indian Journal of Hematology and Blood Transfusion Aims and scope Submit manuscript

Abstract

Bone marrow niche constituents have been implicated in the genesis of clonal hematopoietic dysfunction in myelodysplastic syndromes (MDS), though the exact role of stroma in the pathogenesis of MDS remains to be defined. We have evaluated the characteristics of mesenchymal stromal cells in a cohort of patients with MDS with multilineage dysplasia (MDS-MLD). MSCs were cultured from bone marrow aspirates of MDS-MLD patients and controls with healthy bone marrow. Phenotypic characterization, cell cycle, and apoptosis were analyzed by flow cytometry. Targeted gene expression analysis was done using a reverse-transcription polymerase chain reaction (Q-PCR). MSCs derived from MDS patients (MDS-MSCs) showed normal morphology, phenotype, karyotype and differentiation potential towards adipogenic and osteogenic lineages. However, these MDS-MSCs showed significantly altered cell cycle status and displayed a shift towards increased apoptosis compared to control MSCs (C-MSCs). The gene expression profile of niche responsive/regulatory cytokines showed a trend towards lower expression VEGF, SCF, and ANGPT with no changes in expression of CXCL12A and LIF compared to C-MSCs. The expression levels of Notch signaling components like Notch ligands (JAGGED-1 and DELTA-LIKE-1), receptors (NOTCH1, NOTCH3) and downstream gene (HES1) showed an aberrant expression pattern in MDS-MSCs compared to C-MSCs. Similarly, Q-PCR analysis of Wnt signaling inhibitory ligands (DKK-1 and DKK-2) in MDS-MSCs showed a three-fold increase in mRNA expression of DKK1 and a two-fold increase in DKK2 compared to C-MSCs. These data suggested that MDS-MSCs have an altered proliferation characteristic as well as a dysregulated cytokine secretion and signaling profile. These changes could contribute to the pathogenesis of MDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  2. Keating A (2012) Mesenchymal stromal cells: new directions. Cell Stem Cell 10:709–716

    Article  CAS  PubMed  Google Scholar 

  3. Borovski T, Felipe De Sousa EM, Vermeulen L, Medema JP (2011) Cancer stem cell niche: the place to be. Cancer Res 71:634–639

    Article  CAS  PubMed  Google Scholar 

  4. Saki N, Abroun S, Hagh MF, Asgharei F (2011) Neoplastic bone marrow niche: hematopoietic and mesenchymal stem cells. Cell J Yakhteh 13:131

    CAS  Google Scholar 

  5. Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988

    Article  CAS  PubMed  Google Scholar 

  6. Méndez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and hematopoietic stem cells from a unique bone marrow niche. Nature 466:829–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou BO, Ding L, Morrison SJ (2015) Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting Angiopoietin-1. Elife 4:e05521

    Article  PubMed  PubMed Central  Google Scholar 

  8. Flores-Figueroa E, Arana-Trejo RM, Gutiérrez-Espíndola G et al (2005) Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res 29:215–224

    Article  CAS  PubMed  Google Scholar 

  9. Ferrer RA, Wobus M, List C et al (2013) Mesenchymal stromal cells from patients with myelodysplastic syndrome display distinct functional alterations that are modulated by lenalidomide. Haematologica 98:1677–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Geyh S, Öz S, Cadeddu RP et al (2013) Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia 27:1841–1851

    Article  CAS  PubMed  Google Scholar 

  11. Blau O, Baldus CD, Hofmann W-K et al (2011) Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts. Blood 118:5583–5592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lopez-Villar O, Garcia JL, Sanchez-Guijo FM et al (2009) Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q-syndrome. Leukemia 23:664–672

    Article  CAS  PubMed  Google Scholar 

  13. Flores-Figueroa E, Gutiérrez-Espíndola G, Montesinos JJ et al (2002) In vitro characterization of hematopoietic microenvironment cells from patients with myelodysplastic syndrome. Leuk Res 26:677–686

    Article  CAS  PubMed  Google Scholar 

  14. Sawanobori M, Yamaguchi S, Hasegawa M et al (2003) Expression of TNF receptors and related signaling molecules in the bone marrow from patients with myelodysplastic syndromes. Leuk Res 27:583–591

    Article  CAS  PubMed  Google Scholar 

  15. Campioni D, Punturieri M, Bardi A et al (2004) “In vitro” evaluation of bone marrow angiogenesis in myelodysplastic syndromes: a morphological and functional approach. Leuk Res 28:9–17

    Article  PubMed  Google Scholar 

  16. Santamaría C, Muntión S, Rosón B et al (2012) Impaired expression of DICER, DROSHA, SBDS and some microRNAs in mesenchymal stromal cells from myelodysplastic syndrome patients. Haematologica 97:1218–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  18. Sabapathy V, Ravi S, Srivastava V et al (2012) Long-term cultured human term placenta-derived mesenchymal stem cells of maternal origin display plasticity. Stem Cells Int 2012:174328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Venkatraman A, He XC, Thorvaldsen JL et al (2013) Maternal imprinting at the H19-Igf2 locus maintains adult hematopoietic stem cell quiescence. Nature 500:345–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abbas S, Kini A, Srivastava VM et al (2017) Coexistence of aberrant hematopoietic and stromal elements in myelodysplastic syndromes. Blood Cells Mol Dis 66:37–46

    Article  CAS  PubMed  Google Scholar 

  21. Klaus M, Stavroulaki E, Kastrinaki M-C et al (2009) Reserves, functional, immunoregulatory, and cytogenetic properties of bone marrow mesenchymal stem cells in patients with myelodysplastic syndromes. Stem Cells Dev 19:1043–1054

    Article  CAS  Google Scholar 

  22. Isern J, Méndez-Ferrer S (2011) Stem cell interactions in a bone marrow niche. Curr Osteoporos Rep 9:210–218

    Article  PubMed  Google Scholar 

  23. Shiozawa Y, Havens AM, Pienta KJ, Taichman RS (2008) The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia 22:941–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Medyouf H, Mossner M, Jann J-C et al (2014) Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell 14:824–837. https://doi.org/10.1016/j.stem.2014.02.014

    Article  CAS  PubMed  Google Scholar 

  25. Falconi G, Fabiani E, Fianchi L et al (2016) Impairment of PI3 K/AKT and WNT/β-catenin pathways in bone marrow mesenchymal stem cells isolated from patients with myelodysplastic syndromes. Exp Hematol 44:75–83

    Article  CAS  PubMed  Google Scholar 

  26. Pavlaki K, Pontikoglou CG, Demetriadou A et al (2014) Impaired proliferative potential of bone marrow mesenchymal stromal cells in patients with myelodysplastic syndromes is associated with abnormal WNT signaling pathway. Stem Cells Dev 23:1568–1581

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thankfully acknowledge Maulana Azad National Fellowship, University Grants Commission (UGC), Government of India to Salar Abbas. The authors also acknowledge technical support from core facilities of the Centre for Stem Cell Research (CSCR), A unit of the Institute for Stem Cell Biology and Regenerative Medicine (inStem), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Srivastava.

Ethics declarations

Conflict of interest

Authors declares that they have no conflict of interest.

Ethical Standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, S., Kumar, S., Srivastava, V.M. et al. Heterogeneity of Mesenchymal Stromal Cells in Myelodysplastic Syndrome-with Multilineage Dysplasia (MDS-MLD). Indian J Hematol Blood Transfus 35, 223–232 (2019). https://doi.org/10.1007/s12288-018-1062-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12288-018-1062-6

Keywords

Navigation