Skip to main content
Log in

Harmine, a Novel DNA Methyltransferase 1 Inhibitor in the Leukemia Cell Line

  • Original Article
  • Published:
Indian Journal of Hematology and Blood Transfusion Aims and scope Submit manuscript

Abstract

DNA methylation followed by tumor suppressor gene repression plays a critical role in the leukemia development. So, DNA methyl transferase inhibitors have great importance in treatment of theses malignancies. Harmine, A beta carboline alkaloid derivative of Peganum harmala, had shown anti- proliferative effects on leukemic cell line. This study aimed to evaluate the effect of Harmine on DNMT1 (DNA methyl transferase 1) expression in a leukemic cell line. Cell proliferation and cell cycle analysis were studied in NB4 cell line after treatment with Harmine for 72 h. DNMT1 expression in treated cells was analyzed by real time PCR. Tumor suppressor gene hypometylation and reactivation was evaluated via MSP analysis and also real time PCR. Harmine reduced cell proliferation in NB4 cell line in a time and dose-dependent manner. 102 µg/ml of Harmine was increased amount of cells in G1 Phase of cell cycle (p < 0.05). Anti proliferative doses of Harmine, has suppressed DNMT1 gene in NB4 cell line. Down-regulated DNMT1 induced p15 tumor suppressor promoter hypomethylation and reactivation. Our data indicate that Harmine can be considered as a potential treatment for AML (Acute Myeloid Leukemia), and future studies are required to test the clinical efficacy of Harmine—whether used as a single agent or as an adjuvant—for AML treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bayiin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2:S4–11

    Article  Google Scholar 

  2. Jones PA, Paylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  CAS  PubMed  Google Scholar 

  3. Popovic R, Shah MY, Jonathan D (2013) Epigenetic therapy of hematological malignancies: where are we now? Ther Adv Hematol 4(2):81–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Issa JP (2007) DNA methylation as a therpeutic target. Cancer Res 13:1634–1637

    CAS  Google Scholar 

  5. Yoo CB, Jones PA (2005) Epigenetic therapy of cancer:past, present and future. Nat Rev Drug Discov 5:37–50

    Article  Google Scholar 

  6. Blum W, Marcucci G (2005) Targeting epigenetic change in acutemyeloeid leukemia. Clin Adv Hematol Oncol. 3:855–865

    PubMed  Google Scholar 

  7. Lyko F, Brown R (2005) DNA methyltransferase inhibitors and the development of epigenetic cancer therapyies. J Natal Cancer Inst. 97:1498–1506

    Article  CAS  Google Scholar 

  8. Link A, Balaguer F, Shen Y, Lozano J, Leung H et al (2009) Curcamin is a potent DNA hypomethylation agent. Bioorg Med Chem Lett 19:706–709

    Article  Google Scholar 

  9. Mz Fang, Wang Y, Ai N, Houz Sun Y, Lu H et al (2006) Tea poly phenol epigallocatechin-3-gallate inhibhts DNAmethyltransferase and reactivates methylation –silenced genes in cancer celllines. Cancer Res 63:7563–7570

    Google Scholar 

  10. Fang MZ, Chen D, Sun Y, Jin Z, Christma JK, Yang CS (2005) Reversal of hypometylation and reacetylation of P16INK4b, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 11:7033–7041

    Article  CAS  PubMed  Google Scholar 

  11. Kc Choi, Lee YH, Jung MG, Kwan SH, Kim MJ, Jun WJ et al (2009) Gallic acid suppresses lipopolysaccharide-induced nuclear fat or –KappaB signaling by preventing RelA, acetylationin A549Lung cancer cells. Mol Cancer Res 7:2011–2021

    Article  Google Scholar 

  12. Borra MT, Smith BT, Deno JM (2005) Mechanism of human SIRT1 activation by resveratoral. J Biol Chem 280:17187–17195

    Article  CAS  PubMed  Google Scholar 

  13. Lee WJ, Shim JK, Zhu BT (2005) Mechanisms for the inhibition of DNA metyltransferase by tea catechins and bioflavonids. Mol Pharlacol 68:1018–1036

    Article  CAS  Google Scholar 

  14. Jianhua Yu, Peng Yong, Lai-Chu Wu, Xie Zhiliang, Deng Youcai, Hughes Tiffany et al (2013) Curcumin down-regulates DNA methyltransferase 1 and plays an anti-leukemic role in acute myeloid leukemia. PLoS ONE 8(2):e55934

    Article  Google Scholar 

  15. Khlifi D, Sghaier R, Amouri S, Laouini D, Hamdi M, Bouajila J (2013) Composition and anti-oxidant, anti-cancer and anti-inflammatory activities. Food Chem Toxicol 55:202–208

    Article  CAS  PubMed  Google Scholar 

  16. Hilal HS, Youngken HW (1983) Certain poisonous plants of Egypt. In: Dokki (Ed.), Pharmaceutical society of egypt. The National Information and Documentation Centre, NIDOC, Cairo, Egypt, pp. 88–90

  17. El-Rifaie E (1980) Peganum harmala. Int J Dermatol 19:221–222

    Article  Google Scholar 

  18. Kim H, Sablin SO, Ramsay RR (1997) Inhibition of monoamine oxidase A by beta-carboline derivatives. Arch Biochem Biophys 337:137–142

    Article  CAS  PubMed  Google Scholar 

  19. Iurlo M, Leone G, Schilstrom B, Linner L, Nomikos G, Hertel P et al (2001) Effects of Harmine on dopamine output and metabolism in rat striatum: role of monoamine oxidase-A inhibition. Psychopharmacology 159:98–104

    Article  CAS  PubMed  Google Scholar 

  20. Glennon RA, Dukat M, Grella B, Hong S, Costantino L, Teitler M et al (2000) Binding of beta-carbolines and related agents at serotonin (5-HT(2) and 5-HT(1A)), dopamine(D(2)) and benzodiazepine receptors. Drug Alcohol Depend 60:121–132

    Article  CAS  PubMed  Google Scholar 

  21. Husbands SM, Glennon RA, Gorgerat S, Gough R, Tyacke R, Crosby J et al (2001) Beta-carboline binding to imidazoline receptors. Drug Alcohol Depend 64:203–208

    Article  CAS  PubMed  Google Scholar 

  22. Zaker F, Oody A, Arjmand A (2007) A study on the antitumoral and differentiation effects of peganum harmala derivatives in combination with ATRA on leukaemic cells. Arch Pharm Res 30(7):844–849

    Article  CAS  PubMed  Google Scholar 

  23. Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Med Sci 93(18):9821–9826

    CAS  Google Scholar 

  24. Xu XL, Yu J, Zhang HY, Sun MH, Gu J, Du X et al (2004) Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis. World J Gastroenterol 10:3441–3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Florean C, Schnekenburger M, Grandjenette C, Dicato M, Diederich M (2011) Epigenomics of leukemia: from mechanisms to therapeutic applications. Epigenomics 3(5):581–609

    Article  CAS  PubMed  Google Scholar 

  26. Andrade Augusto F, Borges Kleiton S, Castro-Gamero Angel M, Silveira Vanessa S, Suazo Veridiana K, Oliveira Jaqueline C et al (2014) Zebularine induces hemosensitization to methotrexate and efficiently decreases AhR gene methylation in childhood acute lymphoblastic leukemia cells. Anticancer Drugs 25:72–81

    Article  CAS  PubMed  Google Scholar 

  27. Chen Qi, Chao Rihui, Chen Hongsheng, Hou Xuerui, Yan Huifang, Zhou Shufeng et al (2004) Antitumor and neurotoxic effects of novel Harmine derivatives and Structure-activity relationship analysis. Int J Cancer 114:675–682

    Article  Google Scholar 

  28. Hamsa TP, Kuttan G et al (2011) Harmine activates intrinsic and extrinsic pathways of apoptosis in B16F-10 melanoma. Chinese Medicine 6(1):1

    Article  Google Scholar 

  29. Yoo Christine B, Jeong Shinwu, Egger Gerda, Liang Gangning, Phiasivongsa Pasit, Tang Chunlin et al (2007) Delivery of 5- aza-29-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res 67:6400–6408

    Article  CAS  PubMed  Google Scholar 

  30. Montesano A, Luzi L, Senesi P, Terruzzi I (2013) Modulation of cell cycle progression by 5-azacytidine is associated with early myogenesis induction in murine myoblasts. Int J Biol Sci 9(4):391–402. doi:10.7150/ijbs.4729

    Article  PubMed  PubMed Central  Google Scholar 

  31. De Vos D, van Overveld W (2005) Decitabine: a historical review of the development of an epigenetic drug. Ann Hematol 84(Suppl 1):3–8

    Article  PubMed  Google Scholar 

  32. Achour M, Mouslia M, Alhosina M, Ibrahim A, Pelusob J, Muller CD et al (2013) Epigallocatechin-3-gallate up-regulates tumor suppressor gene expression via a reactive oxygen species-dependent down-regulation of UHRF1. Biochem Biophys Res Commun 430(1):208–212

    Article  CAS  PubMed  Google Scholar 

  33. Agarwa S, Amin K, Jagadeesh SH, Baishay G, Rao P, Barua N, Bhattacharya S et al (2013) Mahanine stores RASSF1A expression by down-regulating DNMT1 and DNMT3B in prostate cancer cells. Mol Cancer 12:99

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arezoo Oodi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oodi, A., Norouzi, H., Amirizadeh, N. et al. Harmine, a Novel DNA Methyltransferase 1 Inhibitor in the Leukemia Cell Line. Indian J Hematol Blood Transfus 33, 509–515 (2017). https://doi.org/10.1007/s12288-016-0770-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12288-016-0770-z

Keywords

Navigation