Advertisement

Current Role of Genetics in Hematologic Malignancies

  • Gaurav Prakash
  • Anupriya KaurEmail author
  • Pankaj Malhotra
  • Alka Khadwal
  • Prashant Sharma
  • Vikas Suri
  • Neelam Varma
  • Subhash Varma
Review Article

Abstract

Rapidly changing field of genetic technology and its application in the management of hematological malignancies has brought significant improvement in treatment and outcome of these disorders. Today, genetics plays pivotal role in diagnosis and prognostication of most hematologic neoplasms. The utilization of genetic tests in deciding specific treatment of various hematologic malignancies as well as for evaluation of depth of treatment response is rapidly advancing. Therefore, it is imperative for practitioners working in the field of hemato-oncology to have sufficient understanding of the basic concepts of genetics in order to comprehend upcoming molecular research in this area and to translate the same for patient care.

Keywords

Hematology Oncology Genetics Molecular tests 

Notes

Acknowledgments

We acknowledge Department of Hematology, PGIMER, Chandigarh for providing images for this publication.

Compliance with Ethical Standards

Conflict of interest

There are no potential conflicts of interest of authors writing this article.

Research involving human participants and/or animals

This is a review article and does not involve any human or animal intervention or experiment.

Informed consent

No human subjects or biologic material was used for this review article.

References

  1. 1.
    Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61(4):212–236CrossRefPubMedGoogle Scholar
  2. 2.
    Harper PS (2006) The discovery of the human chromosome number in Lund, 1955–1956. Hum Genet 119(1–2):226–232CrossRefPubMedGoogle Scholar
  3. 3.
    Rowley JD (1998) The critical role of chromosome translocations in human leukemias. Annu Rev Genet 32:495–519CrossRefPubMedGoogle Scholar
  4. 4.
    Nowell PC, Hungerford DA (1960) Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst 25:85–109PubMedGoogle Scholar
  5. 5.
    Trask BJ (1991) Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends Genet TIG 7(5):149–154CrossRefPubMedGoogle Scholar
  6. 6.
    Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F et al (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258(5083):818–821CrossRefPubMedGoogle Scholar
  7. 7.
    Schröck E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA et al (1996) Multicolor spectral karyotyping of human chromosomes. Science 273(5274):494–497CrossRefPubMedGoogle Scholar
  8. 8.
    Imataka G, Arisaka O (2012) Chromosome analysis using spectral karyotyping (SKY). Cell Biochem Biophys 62(1):13–17PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Logan J, Edwards K, Saunders N (eds) (2009) Real-time PCR: current technology and applications. Caister Academic Press, Norfolk, p 284Google Scholar
  10. 10.
    Watson JD (ed) (2004) Molecular biology of the gene. San Francisco, Pearson/Benjamin Cummings [u.a.], p 732Google Scholar
  11. 11.
    Little S (2001) Amplification-refractory mutation system (ARMS) analysis of point mutations. In: Haines JL, Korf BR, Morton CC, Seidman CE, Seidman JG, Smith DR (eds). Current protocols in human genetics [Internet]. Wiley & Sons, Inc., Hoboken [cited 2015 Aug 8]. Available from http://doi.wiley.com/10.1002/0471142905.hg0908s07
  12. 12.
    Sedlak RH, Jerome KR (2013) Viral diagnostics in the era of digital polymerase chain reaction. Diagn Microbiol Infect Dis 75(1):1–4PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Bench AJ (2012) The role of molecular genetic analysis within the diagnostic haemato-oncology laboratory. Int J Lab Hematol 34(1):21–34CrossRefPubMedGoogle Scholar
  14. 14.
    Khan F, Agarwal A, Agrawal S (2004) Significance of chimerism in hematopoietic stem cell transplantation: new variations on an old theme. Bone Marrow Transplant 34(1):1–12CrossRefPubMedGoogle Scholar
  15. 15.
    Lichter P, Joos S, Bentz M, Lampel S (2000) Comparative genomic hybridization: uses and limitations. Semin Hematol 37(4):348–357CrossRefPubMedGoogle Scholar
  16. 16.
    Read JA, Koff JL, Nastoupil LJ, Williams JN, Cohen JB, Flowers CR (2014) Evaluating cell-of-origin subtype methods for predicting diffuse large B-cell lymphoma survival: a meta-analysis of gene expression profiling and immunohistochemistry algorithms. Clin Lymphoma Myeloma Leuk 14(6):460PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Braggio E, Egan JB, Fonseca R, Stewart AK (2013) Lessons from next-generation sequencing analysis in hematological malignancies. Blood Cancer J 3(7):e127PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Mrózek K, Marcucci G, Nicolet D, Maharry KS, Becker H, Whitman SP et al (2012) Prognostic significance of the European LeukemiaNet standardized system for reporting cytogenetic and molecular alterations in adults with acute myeloid leukemia. J Clin Oncol Off J Am Soc Clin Oncol 30(36):4515–4523CrossRefGoogle Scholar
  19. 19.
    Renneville A, Boissel N, Zurawski V, Llopis L, Biggio V, Nibourel O et al (2009) Wilms tumor 1 gene mutations are associated with a higher risk of recurrence in young adults with acute myeloid leukemia: a study from the Acute Leukemia French Association. Cancer 115(16):3719–3727CrossRefPubMedGoogle Scholar
  20. 20.
    Paschka P, Marcucci G, Ruppert AS, Mrózek K, Chen H, Kittles RA et al (2006) Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv (16) and t(8, 21): a Cancer and Leukemia Group B Study. J Clin Oncol Off J Am Soc Clin Oncol 24(24):3904–3911CrossRefGoogle Scholar
  21. 21.
    Schlenk RF, Döhner K, Krauter J, Fröhling S, Corbacioglu A, Bullinger L et al (2008) Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 358(18):1909–1918CrossRefPubMedGoogle Scholar
  22. 22.
    Ravandi F, Cortes JE, Jones D, Faderl S, Garcia-Manero G, Konopleva MY et al (2010) Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol Off J Am Soc Clin Oncol 28(11):1856–1862CrossRefGoogle Scholar
  23. 23.
    Zelent A, Greaves M, Enver T (2004) Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene 23(24):4275–4283CrossRefPubMedGoogle Scholar
  24. 24.
    Stams WAG, den Boer ML, Beverloo HB, Meijerink JPP, van Wering ER, Janka-Schaub GE et al (2005) Expression levels of TEL, AML1, and the fusion products TEL-AML1 and AML1-TEL versus drug sensitivity and clinical outcome in t(12, 21)—positive pediatric acute lymphoblastic leukemia. Clin Cancer Res Off J Am Assoc Cancer Res 11(8):2974–2980CrossRefGoogle Scholar
  25. 25.
    Garg R, Kantarjian H, Thomas D, Faderl S, Ravandi F, Lovshe D et al (2009) Adults with acute lymphoblastic leukemia and translocation (1, 19) abnormality have a favorable outcome with hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone alternating with methotrexate and high-dose cytarabine chemotherapy. Cancer 115(10):2147–2154PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Campana D (2003) Determination of minimal residual disease in leukaemia patients. Br J Haematol 121(6):823–838CrossRefPubMedGoogle Scholar
  27. 27.
    Faham M, Zheng J, Moorhead M, Carlton VEH, Stow P, Coustan-Smith E et al (2012) Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood 120(26):5173–5180PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    van Dongen JJ, Szczepański T, de Bruijn MA, van den Beemd MW, de Bruin-Versteeg S, Wijkhuijs JM et al (1996) Detection of minimal residual disease in acute leukemia patients. Cytokines Mol Ther 2(2):121–133PubMedGoogle Scholar
  29. 29.
    Campana D (2010) Minimal residual disease in acute lymphoblastic leukemia. Hematology 2010(1):7–12CrossRefPubMedGoogle Scholar
  30. 30.
    Gabert J, Beillard E, van der Velden VHJ, Bi W, Grimwade D, Pallisgaard N et al (2003) Standardization and quality control studies of “real-time” quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer program. Leukemia 17(12):2318–2357CrossRefPubMedGoogle Scholar
  31. 31.
    Cross NCP, White HE, Müller MC, Saglio G, Hochhaus A (2012) Standardized definitions of molecular response in chronic myeloid leukemia. Leukemia 26(10):2172–2175CrossRefPubMedGoogle Scholar
  32. 32.
    Marin D, Milojkovic D, Olavarria E, Khorashad JS, de Lavallade H, Reid AG et al (2008) European LeukemiaNet criteria for failure or suboptimal response reliably identify patients with CML in early chronic phase treated with imatinib whose eventual outcome is poor. Blood 112(12):4437–4444CrossRefPubMedGoogle Scholar
  33. 33.
    Alvarado Y, Kantarjian H, O’Brien S, Faderl S, Borthakur G, Burger J et al (2009) Significance of suboptimal response to imatinib, as defined by the European LeukemiaNet, in the long-term outcome of patients with early chronic myeloid leukemia in chronic phase. Cancer 115(16):3709–3718PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Hehlmann R, Müller MC, Lauseker M, Hanfstein B, Fabarius A, Schreiber A et al (2014) Deep molecular response is reached by the majority of patients treated with imatinib, predicts survival, and is achieved more quickly by optimized high-dose imatinib: results from the randomized CML-study IV. J Clin Oncol Off J Am Soc Clin Oncol 32(5):415–423CrossRefGoogle Scholar
  35. 35.
    Soverini S, Hochhaus A, Nicolini FE, Gruber F, Lange T, Saglio G et al (2011) BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood 118(5):1208–1215CrossRefPubMedGoogle Scholar
  36. 36.
    O’Hare T, Eide CA, Deininger MWN (2007) Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood 110(7):2242–2249CrossRefPubMedGoogle Scholar
  37. 37.
    Hallek M (2015) Chronic lymphocytic leukemia: 2015 Update on diagnosis, risk stratification, and treatment. Am J Hematol 90(5):446–460CrossRefPubMedGoogle Scholar
  38. 38.
    Lin TS, Ruppert AS, Johnson AJ, Fischer B, Heerema NA, Andritsos LA et al (2009) Phase II study of flavopiridol in relapsed chronic lymphocytic leukemia demonstrating high response rates in genetically high-risk disease. J Clin Oncol Off J Am Soc Clin Oncol 27(35):6012–6018CrossRefGoogle Scholar
  39. 39.
    Ferrajoli A, Shanafelt TD, Ivan C, Shimizu M, Rabe KG, Nouraee N et al (2013) Prognostic value of miR-155 in individuals with monoclonal B-cell lymphocytosis and patients with B chronic lymphocytic leukemia. Blood 122(11):1891–1899PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Fonseca R, Debes-Marun CS, Picken EB, Dewald GW, Bryant SC, Winkler JM et al (2003) The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. Blood 102(7):2562–2567CrossRefPubMedGoogle Scholar
  41. 41.
    Broyl A, Hose D, Lokhorst H, de Knegt Y, Peeters J, Jauch A et al (2010) Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood 116(14):2543–2553CrossRefPubMedGoogle Scholar
  42. 42.
    van Laar R, Flinchum R, Brown N, Ramsey J, Riccitelli S, Heuck C et al (2014) Translating a gene expression signature for multiple myeloma prognosis into a robust high-throughput assay for clinical use. BMC Med Genom 7:25CrossRefGoogle Scholar
  43. 43.
    Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G et al (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89(6):2079–2088PubMedGoogle Scholar
  44. 44.
    Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F et al (2012) Revised international prognostic scoring system for myelodysplastic syndromes. Blood 120(12):2454–2465PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Tefferi A, Vardiman JW (2009) Myelodysplastic syndromes. N Engl J Med 361(19):1872–1885CrossRefPubMedGoogle Scholar
  46. 46.
    Giagounidis A, Mufti GJ, Fenaux P, Germing U, List A, MacBeth KJ (2014) Lenalidomide as a disease-modifying agent in patients with del(5q) myelodysplastic syndromes: linking mechanism of action to clinical outcomes. Ann Hematol 93(1):1–11PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Melo JV (1997) BCR-ABL gene variants. Baillières Clin Haematol 10(2):203–222CrossRefPubMedGoogle Scholar
  48. 48.
    Rajkumar SV (2012) Multiple myeloma: 2012 update on diagnosis, risk-stratification, and management. Am J Hematol 87(1):78–88PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Kumar S, Fonseca R, Ketterling RP, Dispenzieri A, Lacy MQ, Gertz MA et al (2012) Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood 119(9):2100–2105PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Indian Society of Haematology & Transfusion Medicine 2015

Authors and Affiliations

  • Gaurav Prakash
    • 1
  • Anupriya Kaur
    • 2
    Email author
  • Pankaj Malhotra
    • 1
  • Alka Khadwal
    • 1
  • Prashant Sharma
    • 3
  • Vikas Suri
    • 1
  • Neelam Varma
    • 3
  • Subhash Varma
    • 1
  1. 1.Clinical Hematology and BMT Division, Department of Internal MedicinePGIMERChandigarhIndia
  2. 2.Medical Geneticist, Sarai BuildingGovernment Medical CollegeChandigarhIndia
  3. 3.Department of HematologyPGIMERChandigarhIndia

Personalised recommendations