Advertisement

Fetal Hemoglobin in Tunisian Sickle Cell Disease Patient: Relationship with Polymorphic Sequences Cis to the β-Globin Gene

  • Imen MoumniEmail author
  • Maha Ben Mustapha
  • Ikbel Ben Mansour
  • Amine Zoraï
  • Kaïs Douzi
  • Sarah Sassi
  • Dorra Chaouachi
  • Fethi Mellouli
  • Mohamed Bejaoui
  • Salem Abbes
Original Article

Abstract

Fetal hemoglobin (HbF) plays a dominant role in ameliorating morbidity and mortality of hemoglobinopathies. We evaluated the effects of polymorphic markers within the β-globin gene cluster to identify the genetic mechanics that influence HbF on Tunisian sickling patients (n = 242). Haplotype analysis was carried out by polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) and the framework polymorphism was established by PCR-sequencing, four independent regions of interest were identified: the 5′ region of β-LCR-HS2 site, the intervening sequence II (IVSII) region of two fetal (Gγ and Aγ) genes and the 5′ region of β-globin gene. The correlation of these various Haplotypes and SNPs with HbF expression and clinical data was studied. Our data showed that among the various polymorphic markers analyzed, only the sequence (AT)xN12(AT)y in LCR HS2 region was significantly associated (p < 0.05) with increased HbF levels, suggesting that the β-globin gene cluster exerts a significant effect on HbF in sickle cell patients. This study can improve understanding of the physiopathology of the disease and aid to increase our ability to predict clinical severity.

Keywords

Fetal hemoglobin (HbF) Microsatellite repeats Sickle cell anemia 

Notes

Acknowledgements

We are grateful to all the staff members for their close cooperation and important contributions. This study was supported by a grant from “Le Ministère de la Recherche Scientifique de Tunisie”.

References

  1. 1.
    Boyer SH, Belding TK, Margolet L, Noyes AN (1975) Fetal hemoglobin restriction to a few erythrocytes (F cells) in normal human adults. Science 188:361–363CrossRefPubMedGoogle Scholar
  2. 2.
    Wood WG, Stamatoyannopoulos G, Lim G, Nute PE (1975) F-cells in the adult: normal values and levels in individuals with hereditary and acquired elevations of HbF. Blood 46:671–682PubMedGoogle Scholar
  3. 3.
    Zago MA, Wood WG, Clegg JB, Weatherall DJ, O’Sullivan M, Gunson H (1979) Genetic control of F cells in human adults. Blood 53:977–986PubMedGoogle Scholar
  4. 4.
    Miyoshi K, Kaneto Y, Kawai H, Ohchi H, Niki S, Hasegawa K, Shirakami A, Yamano T (1988) X-linked dominant control of F-cells in normal adult life: characterization of the Swiss type as hereditary persistence of fetal hemoglobin regulated dominantly by gene(s) on X chromosome. Blood 72:1854–1860PubMedGoogle Scholar
  5. 5.
    Bank A (2006) Regulation of human fetal hemoglobin: new players, new complexities. Blood 107:435–443PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Stamatoyannopoulos G (2005) Control of globin gene expression during development and erythroid differentiation. Exp Hematol 33:259–271PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Embury SH, Hebbel RP, Mohandas N, Steinberg MH (1994) Sickle cell disease: basic principles and clinical practice. Raven Press, New York, pp 327–334Google Scholar
  8. 8.
    Nagel RL, Fleming AF (1992) Genetic epidemiology of the beta s gene. Baillieres Clin Haematol 5:331–365CrossRefPubMedGoogle Scholar
  9. 9.
    Gilman JG, Huisman TH (1985) DNA sequence variation associated with elevated fetal G gamma globin production. Blood 66:783–787PubMedGoogle Scholar
  10. 10.
    Labie D, Pagnier J, Lapoumeroulie C, Rouabhi F, Dunda-Belkhodja O, Chardin P, Beldjord C, Wajcman H, Fabry ME, Nagel RL (1985) Common haplotype dependency of high G gamma-globin gene expression and high Hb F levels in beta-thalassemia and sickle cell anemia patients. Proc Natl Acad Sci USA 82:2111–2114PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Labie D, Elion J (1996) Sequence polymorphisms of potential functional relevance in the beta-globin gene locus. Hemoglobin 20:85–101CrossRefPubMedGoogle Scholar
  12. 12.
    Dover GJ, Smith KD, Chang YC, Purvis S, Mays A, Meyers DA, Sheils C, Serjeant G (1992) Fetal hemoglobin levels in sickle cell disease and normal individuals are partially controlled by an X-linked gene located at Xp22.2. Blood 80:816–824PubMedGoogle Scholar
  13. 13.
    Craig JE, Rochette J, Fisher CA, Weatherall DJ, Marc S, Lathrop GM, Demenais F, Thein S (1996) Dissecting the loci controlling fetal haemoglobin production on chromosomes 11p and 6q by the regressive approach. Nat Genet 12:58–64CrossRefPubMedGoogle Scholar
  14. 14.
    Garner C, Silver N, Best S, Menzel S, Martin C, Spector TD, Thein SL (2004) Quantitative trait locus on chromosome 8q influences the switch from fetal to adult hemoglobin. Blood 104:2184–2186CrossRefPubMedGoogle Scholar
  15. 15.
    Joutovsky A, Nardi M (2004) Hemoglobin C and hemoglobin O-Arab variants can be diagnosed using the Bio-Rad Variant II high-performance liquid chromatography system without further confirmatory tests. Arch Pathol Lab Med 128:435–439PubMedGoogle Scholar
  16. 16.
    Poncz M, Solowiejczyk D, Harpel B, Mory Y, Schwartz E, Surrey S (1982) Construction of human gene libraries from small amounts of peripheral blood: analysis of beta-like globin genes. Hemoglobin 6:27–36CrossRefPubMedGoogle Scholar
  17. 17.
    Perichon B, Ragusa A, Lapoumeroulie C, Romand A, Moi P, Ikuta T, Labie D, Elion J, Krishnamoorthy R (1993) Inter-ethnic polymorphism of the beta-globin gene locus control region (LCR) in sickle-cell anemia patients. Hum Genet 91:464–468CrossRefPubMedGoogle Scholar
  18. 18.
    Mustapha MB, Moumni I, Zorai A, Douzi K, Ghanem A, Abbes S (2012) Microsatellite and single nucleotide polymorphisms in the beta-globin locus control region-hypersensitive Site 2: SPECIFICITY of Tunisian betas chromosomes. Hemoglobin 36:533–544CrossRefPubMedGoogle Scholar
  19. 19.
    Lapoumeroulie C, Castiglia L, Ruberto C, Fichera M, Amata S, Labie D, Ragusa A (1999) Genetic variations in human fetal globin gene microsatellites and their functional relevance. Hum Genet 104:307–314CrossRefPubMedGoogle Scholar
  20. 20.
    Trabuchet G, Elion J, Baudot G, Pagnier J, Bouhass R, Nigon VM, Labie D, Krishnamoorthy R (1991) Origin and spread of beta-globin gene mutations in India, Africa, and Mediterranea: analysis of the 5′ flanking and intragenic sequences of beta S and beta C genes. Hum Biol 63:241–252PubMedGoogle Scholar
  21. 21.
    Moumni I, Mansour IM, Leila C, Mellouli F, Zoraï A, Bejaoui M, Abbes S (2011) Restriction mapping of βS locus among tunisian sickle-cell patients. Am J Hum Biol 23:815–819CrossRefGoogle Scholar
  22. 22.
    Abbes S, Fattoum S, Vidaud M, Goossens M, Rosa J (1991) Sickle cell anemia in the Tunisian population: haplotyping and HB F expression. Hemoglobin 15:1–9CrossRefPubMedGoogle Scholar
  23. 23.
    Labie D, Elion J (2005) Bases moléculaires et physiopathologiques des maladies de l’hémoglobine. EMC-Hématol 2:220–239CrossRefGoogle Scholar
  24. 24.
    Merghoub T, Maier-Redelsperger M, Labie D, Perichon B, Feingold N, Dibenedetto SP, Schiliro G, Samperi P, Ducrocq R, Elion J et al (1996) Variation of fetal hemoglobin and F-cell number with the LCR-HS2 polymorphism in nonanemic individuals. Blood 87:2607PubMedGoogle Scholar
  25. 25.
    Samakoglu S, Philipsen S, Grosveld F, Luleci G, Bagci H (1999) Nucleotide changes in the gamma-globin promoter and the (AT)xNy(AT)z polymorphic sequence of beta LCRHS-2 region associated with altered levels of HbF. Eur J Hum Genet 7:345–356CrossRefPubMedGoogle Scholar
  26. 26.
    Zago MA, Silva WA Jr, Dalle B, Gualandro S, Hutz MH, Lapoumeroulie C, Tavella MH, Araujo AG, Krieger JE, Elion J et al (2000) Atypical beta(s) haplotypes are generated by diverse genetic mechanisms. Am J Hematol 63:79–84CrossRefPubMedGoogle Scholar
  27. 27.
    Sengupta PK, Lavelle DE, Desimone J (1994) The 87-kD A gamma-globin enhancer-binding protein is a product of the HOXB2(HOX2H) locus. Blood 83:1420–1427PubMedGoogle Scholar
  28. 28.
    Labie D, Elion J (1996) Sickle cell anemia: model of variability in expression of monogenic disease. Arch Pediatr 3:101–103CrossRefPubMedGoogle Scholar
  29. 29.
    Ofori-Acquah SF, Lalloz, Serjeant G, Layton DM (2004) Dominant influence of gamma-globin promoter polymorphisms on fetal haemoglobin expression in sickle cell disease. Cell Mol Biol 50:35–42 (Noisy-le-grand, France)PubMedGoogle Scholar

Copyright information

© Indian Society of Haematology & Transfusion Medicine 2015

Authors and Affiliations

  • Imen Moumni
    • 1
    Email author
  • Maha Ben Mustapha
    • 1
  • Ikbel Ben Mansour
    • 1
  • Amine Zoraï
    • 1
  • Kaïs Douzi
    • 1
  • Sarah Sassi
    • 1
  • Dorra Chaouachi
    • 1
  • Fethi Mellouli
    • 2
  • Mohamed Bejaoui
    • 2
  • Salem Abbes
    • 1
  1. 1.Laboratory of Molecular and Cellular Hematology, Pasteur Institute of TunisUniversity of Tunis El ManarTunisTunisia
  2. 2.Service d’Immuno-Hématologie pédiatrique, Centre National de Greffe de Moelle OsseuseTunisTunisia

Personalised recommendations