Skip to main content

Advertisement

Log in

Cryoprotective Effect of Disaccharides on Cord Blood Stem Cells with Minimal Use of DMSO

  • Original Article
  • Published:
Indian Journal of Hematology and Blood Transfusion Aims and scope Submit manuscript

Abstract

Umbilical cord blood (UCB) is an extremely attractive source of stem cells for the treatment of various benign and malignant hematological and non-hematological disorders. To facilitate the preservation of these stem cells, 10 % dimethylsulfoxide (DMSO) is widely used as cryoprotectant in cord blood banks. But it is found to be toxic at this concentration with the result of serious side effects in recipients after infusion of DMSO-cryopreserved cells. Evaluation of viability and functionality of cryopreserved hematopoietic stem cells is needed with either inclusion of nontoxic additives alone or with reduced DMSO concentration. We assessed the post thawing viability of UCB stem cells in the freezing medium containing disaccharides (sucrose or trehalose) alone and in combination with reduced amount i.e. 2 % DMSO by trypan blue staining. The functionally active progenitor cells content of the optimized media was then evaluated and compared with 5% DMSO by a colony forming unit assay using methylcellulose based media. The freezing solution containing 0.2 M trehalose with 2 % DMSO came out to be superior in the evaluation of viability and generation of hematopoietic colonies of erythroid and myeloid lineage than 5 % DMSO alone. While the percentage of viability was lower than 2 % DMSO, as observed in the medium containing 0.2 M trehalose or sucrose alone, with poor outcome of generation of myeloid lineage based colonies. Our study results suggest that trehalose (0.2M) with the inclusion of reduced concentration of DMSO(2%) can better replace 5%DMSO rather than complete removal of DMSO from the freezing medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brooke G, Rossetti T, Pelekanos R, Ilic N, Murray P, Hancock S et al (2009) Manufacturing of human placenta-derived mesenchymal stem cells for clinical trials. Br J Haematol 144:571–579

    Article  PubMed  Google Scholar 

  2. Thirumala S, Zvonic S, Floyd E, Gimble JM, Devireddy RV (2005) Effect of various freezing parameters on the immediate post-thaw membrane integrity of adipose tissue derived adult stem cells. Biotechnol Prog 21:1511–1524

    Article  CAS  PubMed  Google Scholar 

  3. Goh BC, Thirumala S, Kilroy G, Devireddy RV, Gimble JM (2007) Cryopreservation characteristics of adipose-derived stem cells: maintenance of differentiation potential and viability. J Tissue Eng Regen Med 1:322–324

    Article  CAS  PubMed  Google Scholar 

  4. Liu G, Zhou H, Li Y, Li G, Cui L, Liu W et al (2008) Evaluation of the viability and osteogenic differentiation of cryopreserved human adipose-derived stem cells. Cryobiology 57:18–24

    Article  CAS  PubMed  Google Scholar 

  5. Woods EJ, Benson JD, Agca Y, Critser JK (2004) Fundamental cryobiology of reproductive cells and tissues. Cryobiology 48:146–156

    Article  CAS  PubMed  Google Scholar 

  6. Hunt CJ, Armitage SE, Pegg DE (2003) Cryopreservation of umbilical cord blood: 2. Tolerance of CD34(+) cells to multimolar dimethyl sulphoxide and the effect of cooling rate on recovery after freezing and thawing. Cryobiology 46:76–87

    Article  CAS  PubMed  Google Scholar 

  7. Donaldson C, Armitage WJ, Denning-Kendall PA, Nicol AJ, Bradley BA, Hows JM (1996) Optimal cryopreservation of human umbilical cord blood. Bone Marrow Transplant 18:725–731

    CAS  PubMed  Google Scholar 

  8. Alessandrino P, Bernasconi P, Caldera D, Colombo A, Bonfichi M, Malcovati L et al (1999) Adverse events occurring during bone marrow or peripheral blood progenitor cell infusion: analysis of 126 cases. Bone Marrow Transplant 23:533–537

    Article  CAS  PubMed  Google Scholar 

  9. Benekli M, Anderson B, Wentling D, Bernstein S, Czuczman M, McCarthy P (2000) Severe respiratory depression after dimethylsulphoxide-containing autologous stem cell infusion in a patient with AL amyloidosis. Bone Marrow Transplant 25:1299–1301

    Article  CAS  PubMed  Google Scholar 

  10. Hoyt R, Szer J, Grigg A (2000) Neurological events associated with the infusion of cryopreserved bone marrow and/or peripheral blood progenitor cells. Bone Marrow Transplant 25:1285–1287

    Article  CAS  PubMed  Google Scholar 

  11. Zenhausern R, Tobler A, Leoncini L, Hess OM, Ferrari P (2000) Fatal cardiac arrhythmia after infusion of dimethyl sulfoxide-cryopreserved hematopoietic stem cells in a patient with severe primary cardiac amyloidosis and end-stage renal failure. Ann Hematol 79:523–526

    Article  CAS  PubMed  Google Scholar 

  12. Haines AH (2006) Non-equivalence of d- and l-trehalose in stabilizing alkaline phosphatase against freeze-drying and thermal stress. Is chiral recognition involved? Org Biomol Chem 4:702–706

    Article  CAS  PubMed  Google Scholar 

  13. Carpenter JF, Crowe JH (1989) An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry 28:3916–3922

    Article  CAS  PubMed  Google Scholar 

  14. Jovanovic N, Bouchard A, Hofland GW, Witkamp GJ, Crommelin DJ, Jiskoot W (2006) Distinct effects of sucrose and trehalose on protein stability during supercritical fluid drying and freeze-drying. Eur J Pharm Sci 27:336–345

    Article  CAS  PubMed  Google Scholar 

  15. Patist A, Zoerb H (2005) Preservation mechanisms of trehalose in food and biosystems. Colloids Surf B 40:107–113

    Article  CAS  Google Scholar 

  16. Kravchenko LP, Petrenko AYu, Somov AYu et al (2001) Respiratory activity of isolated rat hepatocytes following cold storage and subsequent rewarming: a comparison of sucrose-based and University of Wisconsin solutions. Cryobiology 42:218–221

    Article  CAS  PubMed  Google Scholar 

  17. Kravchenko LP, Semenchenko OA, Fuller BJ (2004) ATP level in whole rat liver during cold hypoxia and subsequent rewarming. Ukr Biochem J 76:136–138

    Google Scholar 

  18. Petrenko AYu, Grischuk VP, Roslyakov AD et al (1992) Survival metabolic activity and transport of potassium ions of rat hepatocytes after rapid freeze–thawing under protection of dimethylsulfoxide and separation in Percoll density Gradient. Cryo Lett 13:87–98

    CAS  Google Scholar 

  19. Sola-Penna M, Ferreira-Pereira A, Lemos AP, Meyer-Fernandes JR (1997) Carbohydrate protection of enzyme structure and function against guanidinium chloride treatment depends on the nature of carbohydrate and enzyme. Eur J Biochem 248:24–29

    Article  CAS  PubMed  Google Scholar 

  20. Rudolph AS, Crowe JH, Crowe LM (1986) Effects of three stabilizing agents—proline, betaine, and trehalose on membrane phospholipids. Arch Biochem Biophys 245:134–143

    Article  CAS  PubMed  Google Scholar 

  21. Limaye LS, Kale VP (2001) Cryopreservation of human hematopoietic cells with membrane stabilizers and bioantioxidants as additives in the conventional freezing medium. J Hematother Stem Cell Res 10:709–718

    Article  CAS  PubMed  Google Scholar 

  22. Zhang XB, Li K, Yau KH et al (2003) Trehalose ameliorates the cryopreservation of cord blood in a preclinical system and increases the recovery of CFUs, long-term culture-initiating cells, and nonobese diabetic SCID repopulating cells. Transfusion 43:265–272

    Article  CAS  PubMed  Google Scholar 

  23. Buchanan SS, Gross SA, Acker JP, Toner M, Carpenter JF, Pyatt DW (2004) Cryopreservation of stem cells using trehalose: evaluation of the method using a human hematopoietic cell line. Stem Cells Dev 13:295–305

    Article  CAS  PubMed  Google Scholar 

  24. Jain NK, Roy I (2008) Role of trehalose in moisture induced aggregation of bovine serum albumin. Eur J Pharm Biopharm 69:824–834

    Article  CAS  PubMed  Google Scholar 

  25. Han Y, Jin BS, Lee SB, Sohn Y, Joung JW, Lee JH (2007) Effects of sugar additives on protein stability of recombinant human serum albumin during lyophilization and storage. Arch Pharm Res 30:1124–1131

    Article  CAS  PubMed  Google Scholar 

  26. Rodrigues JP, Paraguassú-Braga FH, Carvalho L, Abdelhay E, Bouzas LF, Porto LC (2008) Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Cryobiology 56:144–151

    Article  CAS  PubMed  Google Scholar 

  27. Sasnoor LM, Kale VP, Limaye LS (2003) Supplementation of conventional freezing medium with a combination of catalase and trehalose results in better protection of surface molecules and functionality of hematopoietic cells. J Hematother Stem Cell Res 12(5):553–564

    Article  CAS  PubMed  Google Scholar 

  28. Sasnoor LM, Kale VP, Limaye LS (2005) A combination of catalase and trehalose as additives to conventional freezing medium results in improved cryoprotection of human hematopoietic cells with reference to in vitro migration and adhesion properties. Transfusion 45(4):622–633

    Article  CAS  PubMed  Google Scholar 

  29. Fuller B, Paynter S (2004) Fundamentals of cryobiology in reproductive medicine. Reprod Biomed Online 9:680–691

    Article  PubMed  Google Scholar 

  30. Mantri S, Mohapatra PC (2013) Evaluation and optimization of storage conditions of cord blood stem cells. Biomedicine 33(2):215–223

    Google Scholar 

  31. Mahmut N, Katayama Y, Takenaka K et al (1999) Analysis of circulating hematopoietic progenitor cells after peripheral blood stem cell transplantation. Int J Hematol 69:36–42

    CAS  PubMed  Google Scholar 

  32. Sputtek A, Jetter S, Hummel K, Kuhnl P (1997) Cryopreservation of peripheral blood progenitor cells: characteristics of suitable techniques. Beitr Infusionsther Transfusionsmed 34:79–83

    CAS  PubMed  Google Scholar 

  33. Fahy GM, Levy DI, Ali SE (1987) Some emerging principles underlying the physical properties, biological actions, and utility of vitrification solutions. Cryobiology 24:196–213

    Article  CAS  PubMed  Google Scholar 

  34. Kim SI, Choi HK, Son JS et al (2001) Cryopreservation of Taxus chinensis suspension cell cultures. Cryo Lett 22:43–50

    Google Scholar 

  35. Leslie SB, Israeli E, Lighthart B et al (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol 61:3592–3597

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Yokomise H, Inui K, Wada H et al (1995) Reliable cryopreservation of trachea for one month in a new trehalose solution. J Thorac Cardiovasc Surg 110:382–385

    Article  CAS  PubMed  Google Scholar 

  37. Scheinko¨ nig C, Kappicht S, Kolb H-J, Schleuning M (2004) Adoption of long-term cultures to evaluate the cryoprotective potential of trehalose for freezing hematopoietic stem cells. Bone Marrow Transplant 34:531–536

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the grant from Department of Science & Technology (DST), Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santwana Mantri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mantri, S., Kanungo, S. & Mohapatra, P.C. Cryoprotective Effect of Disaccharides on Cord Blood Stem Cells with Minimal Use of DMSO. Indian J Hematol Blood Transfus 31, 206–212 (2015). https://doi.org/10.1007/s12288-014-0352-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12288-014-0352-x

Keywords

Navigation