Skip to main content
Log in

Algorithmen der Bildgebung bei Schädelskeletttraumata

AO-CMF-Trauma-Klassifikation

Algorithms for imaging of skull, midface and mandibular fractures

AO-CMF trauma classification

  • Leitthema
  • Published:
Der MKG-Chirurg Aims and scope

Zusammenfassung

Die Diagnose und Klassifikation von Frakturen der Schädelkalotte, der Schädelbasis, des Mittelgesichts und der Mandibula können nur auf Basis einer genauen klinischen und radiologischen Analyse korrekt erfolgen. Mithilfe der Bildgebung sind Aussagen über den Schweregrad der Verletzung und die Indikationen für das weitere diagnostische und therapeutische Vorgehen möglich. Eine der Fragestellung angepasste Aufnahmetechnik sowie eine korrekte und präzise Interpretation basierend auf genauen anatomischen Kenntnissen sind Voraussetzung für die korrekte Anwendung der neuen AO-CMF-Trauma-Klassifikation. Diese stützt sich auf die Bildgebung zur genauen Dokumentation und Beschreibung der Frakturen. Mit der Computertomographie können die unterschiedlichen Frakturmuster des Schädelskeletts und die Lokalisation von Fragmenten genau dargestellt werden, ebenso ist eine Beurteilung der Weichgewebe möglich. Die durch die Klassifikation definierten 3 Präzisionslevel lassen sich mithilfe der Bildgebung korrekt und genau dokumentieren. In diesem Beitrag werden die notwendigen Voraussetzungen der Bildgebung sowie die kritischen Strukturen bzw. Fragestellungen bezogen auf den Präzisionslevel und die Frakturregion des AO-CMF-Klassifikationssystem dargestellt.

Abstract

The diagnosis and classification of fractures of the skull, the skull base, the midface and the mandible can be reliably made only on the basis of an accurate radiological and clinical analysis. The aim of imaging studies is to support the decision making with respect to the severity of the injuries and the indications for necessary further therapeutic or imaging procedures. A question-adapted acquisition technique as well as a correct and accurate interpretation of imaging studies are essential for the correct use of the new AO-CMF classification. This classification is based on imaging for an accurate documentation and description of the various fractures. Computed tomography enables an exact depiction of the fractured areas, localization of fragments and soft tissue injuries. In this way the three precision levels defined by the classification can be exactly and correctly documented using imaging procedures. In this article the necessary prerequisites for imaging and the most critical structures and issues for accurate AO-CMF classification are presented depending on the precision levels and areas involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Buitrago-Téllez CH, Schilli W, Bohnert M (2011) Gesichtsschädel. In: Steinbrich W, Regazzoni P (Hrsg) Frakturen und Luxationen. Thieme, Stuttgart, S 46–68

    Google Scholar 

  2. Laine FJ, Conway WF, Laskin DM (1993) Radiology of maxillofacial trauma. Curr Probl Diagn Radiol 22(4):145–188

    Article  CAS  PubMed  Google Scholar 

  3. Assael LA (1993) Clinical aspects of imaging in maxillofacial trauma. Radiol Clin North Am 31(1):209–220

    CAS  PubMed  Google Scholar 

  4. Sidebottom AJ, Sissons G (1999) Radiographic screening for midfacial fracture in A&E. Br J Radiol 72(858):523–524

    Article  CAS  PubMed  Google Scholar 

  5. Pathria MN, Blaser SI (1989) Diagnostic imaging of craniofacial fractures. Radiol Clin North Am 27(5):839–853

    CAS  PubMed  Google Scholar 

  6. Cornelius CP, Audigé L, Kunz C, Buitrago-Tellez C, Neff A, Rasse M, Prein J (2013) Die neue AO-CMF Traumaklassifikation für Erwachsene – Überblick, Präzisionslevel und anatomische Module für Unterkiefer, Kiefergelenkfortsätze, Mittelgesicht und Orbita. Op J 29:109–128

    Google Scholar 

  7. Buitrago-Téllez CH, Audigé L, Cornelius CP et al (2014) Radiological systematic approach for diagnosis and classification of craniomax- illofacial fractures using the AO classification system. Craniomaxillofac Trauma Reconstr 7(Supplement 1):S123–S130

    PubMed  PubMed Central  Google Scholar 

  8. Scarfe WC (2005) Imaging of maxillofacial trauma: evolutions and emerging revolutions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 100(2 Suppl):S75–S96

    Article  PubMed  Google Scholar 

  9. Moilanen A (1982) Primary radiographic diagnosis of fractures in the mandible. Int J Oral Surg 11(5):299–303

    Article  CAS  PubMed  Google Scholar 

  10. Scarfe WC, Farman AG, Sukovic P (2006) Clinical applications of cone-beam computed tomography in dental practice. J Can Dent Assoc 72(1):75–80

    PubMed  Google Scholar 

  11. Raustia AM, Pyhtinen J, Oikarinen KS, Altonen M (1990) Conventional radiographic and computed tomographic findings in cases of fracture of the mandibular condylar process. J Oral Maxillofac Surg 48(12):1258–1262

    Article  CAS  PubMed  Google Scholar 

  12. Cornelius CP, Audigé L, Kunz C, Ruddermann R, Buitrago-Téllez CH, Frodel J, Prein J (2014) The comprehensive AOCMF classification system: mandible fractures level 2 tutorial. Craniomaxillofac Trauma Reconstr 7(Supplement 1):S15–S30

    Google Scholar 

  13. Cornelius CP, Audigé L, Kunz C, Ruddermann R, Buitrago-Téllez CH, Frodel J, Prein J (2014) The comprehensive AOCMF classification system: mandible fractures level 3 tutorial. Craniomaxillofac Trauma Reconstr 7(Supplement 1):S31–S43

    Google Scholar 

  14. Luhr HG, Reidick T, Merten HA (1996) Fractures of the atrophic mandible–a challenge for therapy. Fortschr Kiefer Gesichtschir 41:151–154

    CAS  PubMed  Google Scholar 

  15. Markowitz BL, Sinow JD, Kawamoto HK Jr., Shewmake K, Khoumehr F (1999) Prospective comparison of axial computed tomography and standard and panoramic radiographs in the diagnosis of mandibular fractures. Ann Plast Surg 42(2):163–169

    CAS  PubMed  Google Scholar 

  16. Neff A, Cornelius CP, Rasse M, Dalla Torre D, Audigé L (2014) The comprehensive AOCMF classification system: condylar process fracturesl. Craniomaxillofac Trauma Reconstr 7(Supplement 1):S44–S58

    Google Scholar 

  17. Avery LL, Susarla SM, Novelline RA (2011) Multidetector and three-dimensional CT evaluation of the patient with maxillofacial injury. Radiol Clin North Am 49(1):183–203

    Article  PubMed  Google Scholar 

  18. Kunz C, Audigé L, Cornelius CP, Buitrago-Téllez CH, Frodel J, Ruddermann R, Prein J (2014) The comprehensive AOCMF classification system: midface fractures level 2 tutorial. Craniomaxillofac Trauma Reconstr 7(Supplement 1):S59–S67

    Google Scholar 

  19. Novelline RA (1993) Three-dimensional CT of facial trauma. In: Thrall JH (Hrsg) Current pracitce of radiology. Mosby-Year Book, St. Louis, S 323–335

    Google Scholar 

  20. Buitrago-Tellez CH, Wachter R, Ferstl F, Stoll P, Duker J, Langer M (1994) 3‑D CT for the demonstration of findings in compound skull injuries. Rofo 160(2):106–112

    Article  CAS  PubMed  Google Scholar 

  21. Buitrago-Téllez CH, Wächter R, Wimmer B (1993) Digitized film radiography, two- and three-dimensional CT in the assessment of craniofacial trauma and ist sequalae. Eur Radiol 3:164

    Google Scholar 

  22. Jarrahy R, Vo V, Goenjian HA, Tabit CJ, Katchikian HV, Kumar A, Meals C, Bradley JP (2011) Diagnostic accuracy of maxillofacial trauma two-dimensional and three-dimensional computed tomographic scans: comparison of oral surgeons, head and neck surgeons, plastic surgeons, and neuroradiologists. Plast Reconstr Surg 127(6):2432–2440

    Article  CAS  PubMed  Google Scholar 

  23. Cornelius CP, Audigé L, Kunz C, Buitrago-Téllez CH, Ruddermann R, Prein J (2014) The comprehensive AOCMF classification system: midface fractures level 3 tutorial. Craniomaxillofac Trauma Reconstr 7(Supplement 1):S68–S91

    Google Scholar 

  24. Kunz C, Audigé L, Cornelius CP, Buitrago-Téllez CH, Ruddermann R, Prein J (2014) The comprehensive AOCMF classification system: orbital fractures level 3 tutorial. Craniomaxillofac Trauma Reconstr 7(Supplement 1):S92–S102

    Google Scholar 

  25. Ilankovan V, Hadley D, Moos K et al (1991) A comparison of imaging techniques with surgical experience in orbital injuries. A prospective study. J Craniomaxillofac Surg 19(8):348–352

    Article  CAS  PubMed  Google Scholar 

  26. Rhea JT, Rao PM, Novelline RA (1999) Helical CT and three-dimensional CT of facial and orbital injury. Radiol Clin North Am 37(3):489–513

    Article  CAS  PubMed  Google Scholar 

  27. Novelline RA, Liebig T, Jordan CJ (1994) Computed tomography of ocular trauma. Emerg Radiol 1(1):56–67

    Article  Google Scholar 

  28. Irnberger T (1985) Diagnostic potential and value of conventional radiography, x‑ray tomography and high-resolution computed tomography in complex orbital trauma. Rofo 142(2):146–154

    Article  CAS  PubMed  Google Scholar 

  29. Berg I, Palmowski-Wolfe A, Schwenzer-Zimmerer K, Kober C, Radue EW, Zeilhofer HF, Scheffler K, Kunz C, Buitrago-Tellez C (2012) Near-real time oculodynamic MRI: a feasibility study for evaluation of diplopia in comparison with clinical testing. Eur Radiol 22(2):358–363

    Article  PubMed  Google Scholar 

  30. National Collaborating Centre for Acute Care (2007) Head Injury: Triage, Assessment, Investigation and Early Management of Head Injury in Infants, Children and Adults. National Collaborating Centre for Acute Care, London

    Google Scholar 

  31. Remmler D, Denny A, Gosain A, Subichin S (2000) Role of three-dimensional computed tomography in the assessment of nasoorbitoethmoidal fractures. Ann Plast Surg 44(5):553–562

    Article  CAS  PubMed  Google Scholar 

  32. Ringl H, Schernthaner R, Philipp MO, Metz-Schimmerl S, Czerny C, Weber M, Gabler C, Steiner-Ringl A, Peloschek P, Herold CJ, Schima W (2009) Three-dimensional fracture visualisation of multidetector CT of the skull base in trauma patients: comparison of three reconstruction algorithms. Eur Radiol 19(10):2416–2424

    Article  PubMed  Google Scholar 

  33. Xu YM, Yu Q (1999) Diagnosis of skull base dieases using three dimensional computed tomography. Shanghai Kou Qiang Yi Xue 8(3):153–155

    CAS  PubMed  Google Scholar 

  34. Ringl H, Schernthaner RE, Schueller G, Balassy C, Kienzl D, Botosaneanu A, Weber M, Czerny C, Hajdu S, Mang T, Herold CJ, Schima W (2010) The skull unfolded: a cranial CT visualization algorithm for fast and easy detection of skull fractures. Radiology 255(2):553–562 (May)

    Article  PubMed  Google Scholar 

  35. Di Ieva A, Audigé L, Kellman RM, Shumrick KA, Ringl H, Prein J, Matula C (2014) The Comprehensive AOCMF Classification System: Skull base and Cranial vault fractures Level 2 and 3 tutorial. Craniomaxillofac Trauma Reconstr 7(Supplement 1):103–S113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Buitrago-Téllez.

Ethics declarations

Interessenkonflikt

C. Buitrago-Téllez, C. Kunz, L. Audigé, C.-P. Cornelius, J. Prein und C. Leiggener geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

C.-P. Cornelius, München

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buitrago-Téllez, C., Kunz, C., Audigé, L. et al. Algorithmen der Bildgebung bei Schädelskeletttraumata. MKG-Chirurg 10, 134–144 (2017). https://doi.org/10.1007/s12285-017-0101-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12285-017-0101-x

Schlüsselwörter

Keywords

Navigation