Quantification of improvement in triathlon swimming performance by textile speedsuits


To quantify swimwear-induced differences under triathlon-specific conditions, we compare the swimming performance, the metabolic cost, and the standardised passive drag of well-trained triathletes when wearing (1) five speedsuit models by different manufacturers from 2017, (2) usual swimming trunks/swimsuits (men/women), and (3) individually preferred competition trisuits. Because of the complexity of the underlying hydrodynamic and biomechanical effects, three separate experimental stages were realized, each with 6–12 well-trained short- and middle-distance triathletes (male and female, mean age 22 ± 5 years) from the German national elite or junior elite level. All measurements were conducted on the basis of real athletes’ motion in the water to correctly account for all relevant effects, including skin and muscle vibrations. First, the athletes took part in a series of 100 m short-distance tests at maximal effort in a long-course pool to quantify swim-time differences in absolute terms. Second, the subjects completed multiple submaximal 400 m tests at 95% of their individual maximal speed in a swimming flume, with their swimwear-related differences in metabolic load being explored in terms of blood lactate and heart rate. Third, the passive drag of the triathletes was measured in the flume during a towing test under standardised conditions in velocity steps of 0.2 m/s within the triathlon-relevant range of 1.1–1.7 m/s. In all three test stages, the speedsuits exhibited performance advantages over trunks/swimsuits: in the 100 m maximal test, the mean swim time with speedsuits decreased by 0.99 ± 0.30 s (≙ − 1.5%). During the 400 m submaximal flume test, the mean heart rate showed a reduction of 7 ± 2 bpm (≙ − 4.0%), while the post-exercise blood lactate accumulation decreased by 1.0 ± 0.2 mmol/L (≙ − 26.2%). Similarly, the passive drag in the towing test was lowered by 3.2 ± 1.0 W (≙ − 6.9% as for normalised power and − 5.2% as for normalised force) for the speedsuits. Wearing speedsuits instead of usual trunks/swimsuits is shown to improve the swimming performance and to reduce the metabolic cost for well-trained triathletes under triathlon-specific test conditions. The reduction in passive drag of the passively towed athlete’s body due specific speedsuit surface textures seems to be only one reason for performance advantages: the effective reduction in muscular, soft tissue, and skin vibrations at the trunk and thighs during active propulsive motion of the swimmer seems to further contribute substantially.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Garrett WE, Kirkendall DT (eds) (2000) Exercise and sport science. Lippincott Williams & Wilkins, Philadelphia, p 919

    Google Scholar 

  2. 2.

    Chatard JC, Senegas X, Selles M, Dreanot P, Geyssant A (1995) Wet suit effect: a comparison between competitive swimmers and triathletes. Med Sci Sports Exerc 27(4):580–586

    Article  Google Scholar 

  3. 3.

    Cohen RC, Cleary PW, Mason BR, Pease DL (2017) Forces during front crawl swimming at different stroke rates. Sports Eng 21(1):1–11

    Google Scholar 

  4. 4.

    Hue O, Benavente H, Chollet D (2003) The effect of wet suit use by triathletes: an analysis of the different phases of arm movement. J Sports Sci 21(12):1025–1030

    Article  Google Scholar 

  5. 5.

    Prado A, Dufek J, Navalta J, Lough N, Mercer JA (2017) First look into the influence of triathlon wetsuit on resting blood pressure and heart rate variability. Biol Sport 34(1):77–82

    Article  Google Scholar 

  6. 6.

    Toussaint HM, Bruinink L, Coster R, de Looze M, van Rossem B, van Veenen R, de Groot G (1989) Effect of a triathlon wet suit on drag during swimming. Med Sci Sports Exerc 21(3):325–328

    Article  Google Scholar 

  7. 7.

    Deutsche Triathlon Union e V (2017) Die Veranstaltungsordnung der Deutschen Triathlon-Union e. V. Präsidium der DTU. http://wwwdtu-infode/a/dateien/regelwerk-ordnungen/Ordnungen/SpO_%202016_V11.pdf. Accessed 2 May 2017

  8. 8.

    International Triathlon Union (Ed) (2016) ITU competition rules. http://www.triathlonorg/uploads/docs/itusport_competition-rules_2017.pdf. Accessed 2 May 2017

  9. 9.

    Benjanuvatra N, Dawson G, Blanksby BA, Elliott BC (2002) Comparison of buoyancy, passive and net active drag forces between Fastskin and standard swimsuits. J Sci Med Sport 5(2):115–123

    Article  Google Scholar 

  10. 10.

    Mollendorf JC, Termin AC, Oppenheim E, Pendergast DR (2004) Effect of swim suit design on passive drag. Med Sci Sports Exerc 36(6):1029–1035

    Article  Google Scholar 

  11. 11.

    Benjanuvatra N, Dawson G, Blanksby BA, Elliott BC (2001) Comparison of buoyancy, active and passive drag with full length and standard swimsuits. ISBS Conf Proc Arch 1:105–108

    Google Scholar 

  12. 12.

    Chatard JC, Wilson B (2008) Effect of fastskin suits on performance, drag, and energy cost of swimming. Med Sci Sports Exerc 40(6):1149–1154

    Article  Google Scholar 

  13. 13.

    Chollet D, Puel F, Marinho D, Ramos R, Lepretre PM, Louvet B, Komar J, Chavallard F, Vantorre J, Morio C, Seifert L, Vilas-Boas JP (2014) Evaluation of competitive jammers in expert male crawl swimmers. In: Mason B (ed) Biomechanics and medicine in swimming, vol XII. Australian Institute of Sport, Canberra, pp 95–100

    Google Scholar 

  14. 14.

    Roberts BS, Kamel KS, Hedrick CE, McLean SP, Sharp RL (2003) Effect of a fastskin suit on submaximal freestyle swimming. Med Sci Sports Exerc 35(3):519–524

    Article  Google Scholar 

  15. 15.

    Peeling PD, Landers G (2007) The effect of a one-piece competition speedsuit on swimming performance and thermoregulation during a swim-cycle trial in triathletes. J Sci Med Sport 10(5):327–333

    Article  Google Scholar 

  16. 16.

    Pendergast DR, Mollendorf JC, Cuviello R, Termin AC (2006) Application of theoretical principles to swimsuit drag reduction. Sports Eng 9:65–76

    Article  Google Scholar 

  17. 17.

    Pendergast DR, Di Prampero PE, Craig AB, Wilson DR, Rennie DW (1977) Quantitative analysis of the front crawl in men and women. J Appl Physiol 43(3):475–479

    Article  Google Scholar 

  18. 18.

    Kastner T (2010) Ein Vergleich leistungsphysiologischer Parameter und quantitativer Bewegungsmerkmale im 50 m-Schwimmbecken und im Schwimmkanal bei Triathleten. Masterthesis, University of Leipzig

  19. 19.

    Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  20. 20.

    Chatard JC, Chollet D, Millet G (1998) Performance and drag during drafting swimming in highly trained triathletes. Med Sci Sports Exerc 30:1276–1280

    Article  Google Scholar 

  21. 21.

    Ishikura K, Yoshimi J, Matsuda A, Yamashita K, Katsu M, Otsuka S, Tkakagi H (2014) Influence of a newly-developed triathlon suit on the passive drag and body position. Proc Eng 72:338–343

    Article  Google Scholar 

  22. 22.

    Delextrat A, Tricot V, Bernard T, Vercruyssen F, Hausswirth C, Brisswalter J (2003) Drafting during swimming improves efficiency during subsequent cycling. Med Sci Sports Exerc 35(9):1612–1619

    Article  Google Scholar 

  23. 23.

    Peeling PD, Bishop DJ, Landers GJ (2005) Effect of swimming intensity on subsequent cycling and overall triathlon performance. Br J Sports Med 39(12):960–964

    Article  Google Scholar 

Download references


We thank the participating athletes for their kind commitment. We express our gratitude to the companies Filser Sport & Marketing, pricon GmbH & Co KG (Germany), Orbea s.Coop. Ltda. (Spain), sailfish GmbH (Germany) and MooveMee GmbH (Germany) for providing free sample suits for this study during the time of testing. We gratefully acknowledge technical assistance from different sections of our institute. Finally, yet importantly, we wish to thank four anonymous reviewers for helpful comments on the manuscript.

Author information



Corresponding author

Correspondence to Olaf Ueberschär.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest whatsoever.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ueberschär, O., Schleichardt, A., Buchhop, L. et al. Quantification of improvement in triathlon swimming performance by textile speedsuits. Sports Eng 21, 379–388 (2018). https://doi.org/10.1007/s12283-018-0282-1

Download citation


  • Swimsuit
  • Swim performance
  • Drag
  • Flume
  • Heart rate
  • Blood lactate