Advertisement

Sports Engineering

, Volume 20, Issue 3, pp 231–238 | Cite as

CFD analysis of internal ventilation in high-speed human powered vehicles

  • Paolo BaldisseraEmail author
  • Cristiana Delprete
Original Article

Abstract

When dealing with fully faired human powered vehicles (HPVs) for speed or endurance record attempts, the need for internal ventilation of the rider arises. Different solutions have been proposed in the literature and in practice by designers and builders of these bicycles. The present paper proposes an analytical approach to design the frontal air inlet according to the VO\(_{2}\)max of the rider in speed competitions. A 3D computational fluid dynamics (CFD) model is presented to analyse the external and internal flow interaction with respect to three design parameters: the presence of wheel covers, the location of the rear vent and its geometry. The CFD results predict that the wheel covers save 23 W of aerodynamic power at 125 km/h. A secondary but significant design parameter is the rear vent position that can provide a further reduction of 11 W at 125 km/h if properly located. Finally, the effect of the rear vent geometry was below the model confidence level, resulting in a likely negligible design parameter.

Keywords

Human powered vehicles Computational fluid dynamics Internal ventilation Aerodynamic drag 

Notes

Acknowledgements

Computational resources provided by hpc@polito, which is a project of Academic Computing within the Department of Control and Computer Engineering at the Politecnico di Torino (http://www.hpc.polito.it). StarCCM+® licenses were kindly provided by Siemens as official partner of the Policumbent Team educational project.

References

  1. 1.
    Kobayashi T, Kitoh K (1992) A review of CFD methods and their application to automobile aerodynamics. SAE Tech Pap 920338. doi: 10.4271/920338
  2. 2.
    Dhaubhadel MN (1996) Review: CFD applications in the automotive industry. J Fluids Eng 118(4):647. doi: 10.1115/1.2835492
  3. 3.
    Rumsey CL, Ying SX (2002) Prediction of high lift: review of present CFD capability. Prog Aerosp Sci 38(2):145. doi: 10.1016/S0376-0421(02)00003-9
  4. 4.
    Fujii K (2005) Progress and future prospects of CFD in aerospace - wind tunnel and beyond. Prog Aerosp Sci 41(6):455. doi: 10.1016/j.paerosci.2005.09.001
  5. 5.
    Nicolopoulos D, Berton E, Gouvernet G, Jacques A (2009) A hybrid numerical method to develop America's Cup yacht appendages. Sports Eng 11(4):177. doi: 10.1007/s12283-009-0022-7
  6. 6.
    Banks J, Phillips AB, Turnock SR, Hudson DA, Taunton DJ (2014) Kayak blade-hull interactions: a body force approach for self-propelled simulations. Proc IMechE Part P J Sports Eng Technol 228(1):49. doi: 10.1177/1754337113493847
  7. 7.
    Coppel A, Gardner TN, Caplan N, Hargreaves DM (2010) Simulating the fluid dynamic behaviour of oar blades in competition rowing. Proc IMechE Part P J Sports Eng Technol 224(1):25. doi: 10.1243/17543371JSET37
  8. 8.
    Sliasas A, Tullis S (2009) Numerical modelling of rowing blade hydrodynamics. Sports Eng 12(1):31. doi: 10.1007/s12283-009-0026-3
  9. 9.
    Sliasas A, Tullis S (2010) The dynamic flow behaviour of an oar blade in motion using a hydrodynamics-based shell-velocity-coupled model of a rowing stroke. Proc IMechE Part P J Sports Eng Technol 224(1):9. doi: 10.1243/17543371JSET57
  10. 10.
    Bixler B, Riewald S (2002) Analysis of a swimmer's hand and arm in steady flow conditions using computational fluid dynamics. J Biomech 35(5):713. doi: 10.1016/S0021-9290(01) 00246-9
  11. 11.
    Rouboa A, Silva A, Leal L, Rocha J, Alves F (2006) The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics. J Biomech 39(7):1239. doi: 10.1016/j.jbiomech.2005.03.012
  12. 12.
    Hayati AN, Ghaffari H, Shams M (2015) Analysis of free-surface effects on swimming by the application of the computational fluid dynamics method. Proc IMechE Part P J Sports Eng Technol. doi: 10.1177/1754337115598488
  13. 13.
    Blocken B, Defraeye T, Koninckx E, Carmeliet J, Hespel P (2013) CFD simulations of the aerodynamic drag of two drafting cyclists. Comput Fluids 71:435. doi: 10.1016/j.compfluid.2012.11.012
  14. 14.
    Blocken B, Toparlar Y (2015) A following car influences cyclist drag: CFD simulations and wind tunnel measurements. J Wind Eng Ind Aerodyn 145:178. doi: 10.1016/j.jweia.2015.06.015
  15. 15.
    Defraeye T, Blocken B, Koninckx E, Hespel P, Carmeliet J (2010) Aerodynamic study of different cyclist positions: CFD analysis and full-scale wind-tunnel tests. J Biomech 43(7):1262. doi: 10.1016/j.jbiomech.2010.01.025
  16. 16.
    Defraeye T, Blocken B, Koninckx E, Hespel P, Carmeliet J (2010) Computational fluid dynamics analysis of cyclist aerodynamics: performance of different turbulence-modelling and boundary-layer modelling. J Biomech 43(12):2281. doi: 10.1016/j.jbiomech.2010.04.038
  17. 17.
    Defraeye T, Blocken B, Koninckx E, Hespel P, Carmeliet J (2011) Computational fluid dynamics analysis of drag and convective heat transfer of individual body segments for different cyclist positions. J Biomech 44(9):1695. doi: 10.1016/j.jbiomech.2011.03.035
  18. 18.
    Defraeye T, Blocken B, Koninckx E, Hespel P, Verboven P, Nicolai B, Carmeliet J (2013) Cyclist drag in team pursuit: influence of cyclist sequence, stature, and arm spacing. J Biomech 136(1):011005. doi: 10.1115/1.4025792
  19. 19.
    Fintelman D, Hemida H, Sterling M, Li FX (2014) CFD simulations of the flow around a cyclist subjected to crosswinds. J Wind Eng Ind Aerodyn 144(31):2015. doi: 10.1016/j.jweia.2015.05.009
  20. 20.
    Griffith MD, Crouch T, Thompson MC, Burton D, Sheridan J, Brown NAT (2014) Computational fluid dynamics study of the effect of leg position on cyclist aerodynamic drag. J Fluid Eng T ASME 136(10):101105. doi: 10.1115/1.4027428
  21. 21.
    http://www.ihpva.org. Accessed 24 April 2017
  22. 22.
    http://www.whpva.org. Accessed 24 April 2017
  23. 23.
    Prebble T (2012) More positive data from leisure trends group. Recumbent J. http://www.recumbentjournal.com. Accessed 1 Sept 2016
  24. 24.
    Prebble T (2012) Recumbents on the rise according to leisure trends group. Recumbent J. http://www.recumbentjournal.com. Accessed 1 Sept 1 2016
  25. 25.
    Prebble T (2013) Trikes are the wave of the future. Recumbent J. http://www.recumbentjournal.com. Accessed 1 Sept 2016
  26. 26.
  27. 27.
    Nobile J (1987) Ventilation of streamlined HPVs. Hum Power 6(2):5Google Scholar
  28. 28.
    Drela M (1994) All-sealed fairings: ventilation gives very low drag. Hum Power 11(3):23Google Scholar
  29. 29.
    Schreur WB (2004) The ventilation of streamlined human powered vehicles. Hum Power eJ. http://www.hupi.org. Accessed 5 April 2016
  30. 30.
    Kyle CR, Weaver MD (2004) Aerodynamics of human-powered vehicles. Proc IMechE Part A J Power Energy 218(3):141. doi: 10.1243/095765004323049878
  31. 31.
    Gong H, Bradley PW, Simmons MS, Tashkin DP (1986) Impaired exercise performance and pulmonary function in elite cyclists during low-level ozone exposure in a hot environment. Am Rev Respir Dis 134(4):726. doi: 10.1164/arrd.1986.134.4.726
  32. 32.
  33. 33.
    Malan P, Suluksna K, Juntasaro E (2009) Calibrating the γ-Reθ transition model for commercial CFD. In: 47th AIAA aerospace sciences meeting. pp. 5–8Google Scholar
  34. 34.
    Spalart P, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows. In: 30th aerospace sciences meeting and exhibit. p. 439Google Scholar
  35. 35.
    Baldissera P, Delprete C (2016) External and internal CFD analysis of a high-speed human powered vehicle. Int J Mech Control 17(2):27Google Scholar
  36. 36.
    Baldissera P (2017) Proposal of a coast-down model including speed-dependent coefficients for the retarding forces. Proc IMechE Part P J Sports Eng Technol. doi: 10.1177/1754337116658587
  37. 37.
    Hennekam W, Bontsema J (1991) Determination of Fr and Kd from the solution of the equation of motion of a cyclist. Eur J Phys 12(2):59Google Scholar
  38. 38.
    Hennekam W, Govers M (1996) The freewheeling cyclist. Phys Educ 31(5):320Google Scholar
  39. 39.
    Schlichting H, Gersten K, Krause E, Oertel H, Mayes K (1960) Boundary-layer theory, vol 7. Springer-Verlag, Berlin HeidelbergGoogle Scholar

Copyright information

© International Sports Engineering Association 2017

Authors and Affiliations

  1. 1.Politecnico di TorinoTurinItaly

Personalised recommendations