## Erratum to: Sports Eng (2010) 12:143–153 DOI 10.1007/s12283-010-0040-5

Due to a processing error, the presentation of Eqs. 6–8, 14, and 16 was incorrect. The correct versions are given below:

$$ W_{n} (x) = { \sin }\,\beta_{n} x - { \sinh }\,\beta_{n} x - \alpha_{n} ({ \cos }\,\beta_{n} x - { \cosh }\,\beta_{n} x) $$

(6)

$$ { \cos }\,\beta_{n} L \cdot { \cosh }\,\beta_{n} L = - 1 $$

(7)

$$ \alpha_{n} = {\frac{{{ \sin }\,\beta_{n} L + { \sinh }\,\beta_{n} L}}{{{ \cos }\,\beta_{n} L + { \cosh }\,\beta_{n} L}}} $$

(8)

$$ W^{\prime\prime}_{n} (x) = - \beta_{n}^{2} ({ \sin }\,\beta_{n} x + { \sinh }\,\beta_{n} x - \alpha_{n} ({ \cos }\,\beta_{n} x + { \cosh }\,\beta_{n} x)) $$

(14)

$$ \begin{aligned} \varepsilon (x_{sg} ,t) & = - RW^{\prime\prime}_{n} (x_{sg} ){\frac{{2(\alpha_{n} + \beta_{n} h)}}{{b\omega_{n} \beta_{n}^{2} }}}\int\limits_{0}^{t} {\alpha_{\varepsilon } (\tau )\,{ \sin }\,\omega_{n} (t - \tau )\,{\text{d}}\tau } \\
& = - RW^{\prime\prime}_{n} (x_{sg} )(\alpha_{\varepsilon } * g)(t) \\ \end{aligned} $$

(16)

## Author information

### Affiliations

### Corresponding author

## Additional information

The online version of the original article can be found under doi:10.1007/s12283-010-0040-5.

## Rights and permissions

## About this article

### Cite this article

Kwan, M., Cheng, C., Tang, W. *et al.* Erratum to: Measurement of badminton racket deflection during a stroke.
*Sports Eng* **12, **213 (2010). https://doi.org/10.1007/s12283-010-0045-0

Published:

Issue Date: