# Erratum to: Measurement of badminton racket deflection during a stroke

## Erratum to: Sports Eng (2010) 12:143–153 DOI 10.1007/s12283-010-0040-5

Due to a processing error, the presentation of Eqs. 68, 14, and 16 was incorrect. The correct versions are given below:

$$W_{n} (x) = { \sin }\,\beta_{n} x - { \sinh }\,\beta_{n} x - \alpha_{n} ({ \cos }\,\beta_{n} x - { \cosh }\,\beta_{n} x)$$
(6)
$${ \cos }\,\beta_{n} L \cdot { \cosh }\,\beta_{n} L = - 1$$
(7)
$$\alpha_{n} = {\frac{{{ \sin }\,\beta_{n} L + { \sinh }\,\beta_{n} L}}{{{ \cos }\,\beta_{n} L + { \cosh }\,\beta_{n} L}}}$$
(8)
$$W^{\prime\prime}_{n} (x) = - \beta_{n}^{2} ({ \sin }\,\beta_{n} x + { \sinh }\,\beta_{n} x - \alpha_{n} ({ \cos }\,\beta_{n} x + { \cosh }\,\beta_{n} x))$$
(14)
\begin{aligned} \varepsilon (x_{sg} ,t) & = - RW^{\prime\prime}_{n} (x_{sg} ){\frac{{2(\alpha_{n} + \beta_{n} h)}}{{b\omega_{n} \beta_{n}^{2} }}}\int\limits_{0}^{t} {\alpha_{\varepsilon } (\tau )\,{ \sin }\,\omega_{n} (t - \tau )\,{\text{d}}\tau } \\ & = - RW^{\prime\prime}_{n} (x_{sg} )(\alpha_{\varepsilon } * g)(t) \\ \end{aligned}
(16)

## Author information

Authors

### Corresponding author

Correspondence to Maxine Kwan.

The online version of the original article can be found under doi:10.1007/s12283-010-0040-5.

## Rights and permissions

Reprints and Permissions