Skip to main content

Advertisement

Log in

SLC38A5 promotes glutamine metabolism and inhibits cisplatin chemosensitivity in breast cancer

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

Solute carrier family 38 member 5 (SLC38A5), as an amino acid transporter, play a vital role in cellular biological processes. In this study, we analyzed the function of SLC38A5 and its potential mechanism in breast cancer (BC) progression.

Methods

The expression of SLC38A5 in cancer and adjacent-normal tissues was analyzed by qRT-PCR and Western blot, and its correlation with patient prognosis was analyzed. The immunohistochemical staining of cancer tissues and adjacent-normal tissues was performed on SLC38A5-positive specimens. BC mice were successfully applied to examine the role of SLC38A5 on tumor proliferation using the CCK-8 assay. In BC cells and mouse tumor tissues, SLC38A5 and PCNA expression were determined by Western blotting.

Results

The study found that SLC38A5 was highly expressed in BC patients and associated with a poor survival. SLC38A5 silencing inhibited BC cell viability and glutamine uptake. In addition, SLC38A5 overexpression promoted BC cell viability via the glutamine metabolism. SLC38A5 inhibited cisplatin chemosensitivity in BC cells. Importantly, SLC38A5 silencing inhibited tumor growth in vivo.

Conclusion

Our findings suggest that SLC38A5 enhances BC cell viability by glutamine metabolism, inhibits the chemical sensitivity of cisplatin in BC cells, and promotes tumor growth, emphasizing the clinical relevance of SLC38A5 in BC management as a novel potential therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

    Article  PubMed  Google Scholar 

  2. Sharma R. Temporal patterns of breast cancer incidence, mortality, disability-adjusted life years and risk factors in 12 South American Countries, 1990–2019: an examination using estimates from the global burden of disease 2019 study. Breast Cancer Res Treat. 2023;202(3):529–40.

    Article  PubMed  Google Scholar 

  3. Li J, Sheng D, Chen J, You C, Liu S, Xu H, Chang C. Artificial intelligence in breast imaging: potentials and challenges. Phys Med Biol. 2023. https://doi.org/10.1088/1361-6560/acfade.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thakur P, Dahiya H, Kaushal A, Gupta VK, Saini AK, Saini RV. Exosomal miRNAs as next-generation therapy vehicles in breast cancer. Curr Gene Ther. 2023;23(5):330–42.

    Article  CAS  PubMed  Google Scholar 

  5. Cluntun AA, Lukey MJ, Cerione RA, Locasale JW. Glutamine metabolism in cancer: understanding the heterogeneity. Trends Cancer. 2017;3(3):169–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anderson PM, Lalla RV. Glutamine for amelioration of radiation and chemotherapy associated mucositis during cancer therapy. Nutrients. 2020;12(6):1675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li T, Le A. Glutamine metabolism in cancer. Adv Exp Med Biol. 2018;1063:13–32.

    Article  CAS  PubMed  Google Scholar 

  8. Yang WH, Qiu Y, Stamatatos O, Janowitz T, Lukey MJ. Enhancing the efficacy of glutamine metabolism inhibitors in cancer therapy. Trends Cancer. 2021;7(8):790–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. You S, Han X, Xu Y, Yao Q. Research progress on the role of cationic amino acid transporter (CAT) family members in malignant tumors and immune microenvironment. Amino Acids. 2023. https://doi.org/10.1007/s00726-023-03313-1.

    Article  PubMed  Google Scholar 

  10. Bhutia YD, Ganapathy V. Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim Biophys Acta. 2016;1863(10):2531–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ramachandran S, Sennoune RS, Sharma M, Thangaraju M, Suresh VV, Sneigowski T, Bhutia YD, Pruitt K, Ganapathy V. Expression and function of SLC38A5, an amino acid-coupled Na+/H+ exchanger, in triple-negative breast cancer and its relevance to macropinocytosis. Biochem J. 2021;478(21):3957–76.

    Article  CAS  PubMed  Google Scholar 

  12. Sniegowski T, Korac K, Bhutia YD, Ganapathy V. SLC6A14 and SLC38A5 drive the glutaminolysis and serine-glycine-one-carbon pathways in cancer. Pharmaceuticals (Basel). 2021;14(3):216.

    Article  CAS  PubMed  Google Scholar 

  13. Guidi N, Longo VD. Periodic fasting starves cisplatin-resistant cancers to death. EMBO J. 2018;37(14): e99815.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Girardi E, César-Razquin A, Lindinger S, Papakostas K, Konecka J, Hemmerich J, Kickinger S, Kartnig F, Gürtl B, Klavins K, et al. A widespread role for SLC transmembrane transporters in resistance to cytotoxic drugs. Nat Chem Biol. 2020;16(4):469–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gote V, Nookala AR, Bolla PK, Pal D. Drug resistance in metastatic breast cancer: tumor targeted nanomedicine to the rescue. Int J Mol Sci. 2021;22(9):4673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garcia-Martinez L, Zhang Y, Nakata Y, Chan HL, Morey L. Epigenetic mechanisms in breast cancer therapy and resistance. Nat Commun. 2021;12(1):1786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dong X, Bai X, Ni J, Zhang H, Duan W, Graham P, Li Y. Exosomes and breast cancer drug resistance. Cell Death Dis. 2020;11(11):987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nedeljković M, Damjanović A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge. Cells. 2019;8(9):957.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yoo HC, Yu YC, Sung Y, Han JM. Glutamine reliance in cell metabolism. Exp Mol Med. 2020;52(9):1496–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li T, Copeland C, Le A. Glutamine metabolism in cancer. Adv Exp Med Biol. 2021;1311:17–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xiao D, Zeng L, Yao K, Kong X, Wu G, Yin Y. The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications. Amino Acids. 2016;48(9):2067–80.

    Article  CAS  PubMed  Google Scholar 

  22. Hu X, Jin H, Zhu L. Effect of glutamine metabolism on chemoresistance and its mechanism in tumors. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2021;50(1):32–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Edwards DN, Ngwa VM, Raybuck AL, Wang S, Hwang Y, Kim LC, Cho SH, Paik Y, Wang Q, Zhang S, et al. Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer. J Clin Invest. 2021;131(4): e140100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Terunuma A, Putluri N, Mishra P, Mathé EA, Dorsey TH, Yi M, Wallace TA, Issaq HJ, Zhou M, Killian JK, et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest. 2014;124(1):398–412.

    Article  CAS  PubMed  Google Scholar 

  25. Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2017;14(1):11–31.

    Article  CAS  PubMed  Google Scholar 

  26. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458(7239):762–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reynolds MR, Lane AN, Robertson B, Kemp S, Liu Y, Hill BG, Dean DC, Clem BF. Control of glutamine metabolism by the tumor suppressor Rb. Oncogene. 2014;33(5):556–66.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang X, Han L, Zhang H, Niu Y, Liang R. Identification of potential key genes of TGF-beta signaling associated with the immune response and prognosis of ovarian cancer based on bioinformatics analysis. Heliyon. 2023;9(8): e19208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sennoune SR, Nandagopal GD, Ramachandran S, Mathew M, Sivaprakasam S, Jaramillo-Martinez V, Bhutia YD, Ganapathy V. Potent inhibition of macropinocytosis by niclosamide in cancer cells: a novel mechanism for the anticancer efficacy for the antihelminthic. Cancers (Basel). 2023;15(3):759.

    Article  CAS  PubMed  Google Scholar 

  30. Chen H, Yang W, Ma L, Li Y, Ji Z. Machine-learning based integrating bulk and single-cell RNA sequencing reveals the SLC38A5-CCL5 signaling as a promising target for clear cell renal cell carcinoma treatment. Transl Oncol. 2023;38: 101790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Todorova VK, Kaufmann Y, Luo S, Klimberg VS. Tamoxifen and raloxifene suppress the proliferation of estrogen receptor-negative cells through inhibition of glutamine uptake. Cancer Chemother Pharmacol. 2011;67(2):285–91.

    Article  CAS  PubMed  Google Scholar 

  32. Jeon YJ, Khelifa S, Ratnikov B, Scott DA, Feng Y, Parisi F, Ruller C, Lau E, Kim H, Brill LM, et al. Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell. 2015;27(3):354–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by Shanghai Natural Science Foundation (20ZR1411900) and Shanghai Health Care Commission (202040065).

Author information

Authors and Affiliations

Authors

Contributions

Xiaowei Shen, Ganggang Wang, and Hua He wrote the paper and conceived and designed the experiments; Xiaowei Shen, and Ganggang Wang analyzed the data; Ping Shang, Bin Yan, Xiaoliang Wang, and Weixing Shen collected and provided the sample for this study. All the authors have read and approved the final submitted manuscript.

Corresponding author

Correspondence to Xiaowei Shen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Wang, G., He, H. et al. SLC38A5 promotes glutamine metabolism and inhibits cisplatin chemosensitivity in breast cancer. Breast Cancer 31, 96–104 (2024). https://doi.org/10.1007/s12282-023-01516-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-023-01516-8

Keywords

Navigation