Skip to main content

Advertisement

Log in

Construction of a prognostic risk assessment model for HER2 + breast cancer based on autophagy-related genes

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Although breast cancer (BC) has a low mortality rate relative to other cancers, it prominently affects the survival of patients with human epidermal growth factor receptor-2 (HER2 +) BC due to its high recurrence rate. By far, it has been found that autophagy can affect various tumor occurrence and development, as well as patients’ prognosis. HER2 + BC patient samples and autophagy-related genes (ARGs) were acquired from a public database, least absolute shrinkage and selection operator (LASSO) and Cox analyses (including univariate and multivariate analyses) were utilized to construct a 9-ARGs model, which was verified by using HER2 + BC patient samples in The Cancer Genome Atlas (TCGA) dataset. Sample risk score was worked out based on characteristic genes, and prominent differences in overall survival were tracked down between high- and low-risk groups. Predictive ability of the model was validated by drawing receiver operating characteristic (ROC) curves and then calculating the area under the curves (AUC) value. Results showed good accuracy and prediction ability of the model in both validation set and training set. For the purpose of facilitating model application in clinical practice, we constructed a nomogram combing clinical factors and risk scores to evaluate 1-year, 3-year and 5-year survival of HER2 + BC patients. In addition, we assessed the correlation of risk score with tumor mutational burden and tumor immune infiltration. Results exhibited that in a high-risk group, tumor mutation was relatively high, while tumor immune infiltration was relatively poor. Overall, based on ARGs, the prognostic signature in this study can tellingly evaluate prognoses of HER2 + BC patients and provide a reference for clinicians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Cronin KA, Harlan LC, Dodd KW, Abrams JS, Ballard-Barbash R. Population-based estimate of the prevalence of HER-2 positive breast cancer tumors for early stage patients in the US. Cancer Invest. 2010;28(9):963–8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.

    Article  CAS  PubMed  Google Scholar 

  4. Seshadri R, Firgaira FA, Horsfall DJ, McCaul K, Setlur V, Kitchen P. Clinical significance of HER-2/neu oncogene amplification in primary breast cancer. The South Australian breast cancer study group. J Clin Oncol. 1993;11(10):1936–42.

    Article  CAS  PubMed  Google Scholar 

  5. Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F, Codogno P, Debnath J, Gewirtz DA, Karantza V, Kimmelman A, Kumar S, Levine B, Maiuri MC, Martin SJ, Penninger J, Piacentini M, Rubinsztein DC, Simon HU, Simonsen A, Thorburn AM, Velasco G, Ryan KM, Kroemer G. Autophagy in malignant transformation and cancer progression. EMBO J. 2015;34(7):856–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smit L, Berns K, Spence K, Ryder WD, Zeps N, Madiredjo M, Beijersbergen R, Bernards R, Clarke RB. An integrated genomic approach identifies that the PI3K/AKT/FOXO pathway is involved in breast cancer tumor initiation. Oncotarget. 2016;7(3):2596–610.

    Article  PubMed  Google Scholar 

  7. Schaffner I, Minakaki G, Khan MA, Balta EA, Schlotzer-Schrehardt U, Schwarz TJ, Beckervordersandforth R, Winner B, Webb AE, DePinho RA, Paik J, Wurst W, Klucken J, Lie DC. FoxO function is essential for maintenance of autophagic flux and neuronal morphogenesis in adult neurogenesis. Neuron. 2018;99(6):1188–12036.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Audesse AJ, Dhakal S, Hassell LA, Gardell Z, Nemtsova Y, Webb AE. FOXO3 directly regulates an autophagy network to functionally regulate proteostasis in adult neural stem cells. PLoS Genet. 2019;15(4):e1008097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin QG, Liu W, Mo YZ, Han J, Guo ZX, Zheng W, Wang JW, Zou XB, Li AH, Han F. Development of prognostic index based on autophagy-related genes analysis in breast cancer. Aging (Albany NY). 2020;12(2):1366–76.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao S, Guan B, Mi Y, Shi D, Wei P, Gu Y, Cai S, Xu Y, Li X, Yan D, Huang M, Li D. LncRNA MIR17HG promotes colorectal cancer liver metastasis by mediating a glycolysis-associated positive feedback circuit. Oncogene. 2021;40(28):4709–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vega-Rubin-de-Celis S, Zou Z, Fernandez AF, Ci B, Kim M, Xiao G, Xie Y, Levine B. Increased autophagy blocks HER2-mediated breast tumorigenesis. Proc Natl Acad Sci U S A. 2018;115(16):4176–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Therneau TM, Grambsch PM. Modeling survival data: extending the cox model. New York.: Springer; 2000.

    Book  Google Scholar 

  13. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Blanche P, Dartigues JF, Jacqmin-Gadda H. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat Med. 2013;32(30):5381–97.

    Article  PubMed  Google Scholar 

  15. Huang C, Liu Z, Xiao L, Xia Y, Huang J, Luo H, Zong Z, Zhu Z. Clinical significance of serum CA125, CA19-9, CA72-4, and fibrinogen-to-lymphocyte ratio in gastric cancer with peritoneal dissemination. Front Oncol. 2019;9:1159.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schettini F, Prat A. Dissecting the biological heterogeneity of HER2-positive breast cancer. Breast. 2021;59:339–50.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tyutyunyk-Massey L, Gewirtz DA. Roles of autophagy in breast cancer treatment: target, bystander or benefactor. Semin Cancer Biol. 2020;66:155–62.

    Article  CAS  PubMed  Google Scholar 

  19. Chiu CF, Chin HK, Huang WJ, Bai LY, Huang HY, Weng JR. Induction of apoptosis and autophagy in breast cancer cells by a novel HDAC8 inhibitor. Biomolecules. 2019;9(12):824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ulasov IV, Borovjagin AV, Timashev P, Cristofanili M, Welch DR. KISS1 in breast cancer progression and autophagy. Cancer Metastasis Rev. 2019;38(3):493–506.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li X, Jin F, Li Y. A novel autophagy-related lncRNA prognostic risk model for breast cancer. J Cell Mol Med. 2021;25(1):4–14.

    Article  CAS  PubMed  Google Scholar 

  22. Storr SJ, Thompson N, Pu X, Zhang Y, Martin SG. Calpain in breast cancer: role in disease progression and treatment response. Pathobiology. 2015;82(3–4):133–41.

    Article  PubMed  Google Scholar 

  23. Storr SJ, Woolston CM, Barros FF, Green AR, Shehata M, Chan SY, Ellis IO, Martin SG. Calpain-1 expression is associated with relapse-free survival in breast cancer patients treated with trastuzumab following adjuvant chemotherapy. Int J Cancer. 2011;129(7):1773–80.

    Article  CAS  PubMed  Google Scholar 

  24. Al-Bahlani SM, Al-Rashdi RM, Kumar S, Al-Sinawi SS, Al-Bahri MA, Shalaby AA. Calpain-1 expression in triple-negative breast cancer: a potential prognostic factor independent of the proliferative/apoptotic index. Biomed Res Int. 2017;2017:9290425.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yeerken D, Hong R, Wang Y, Gong Y, Liu R, Yang D, Li J, Fan J, Chen J, Zhang W, Zhan Q. PFKP is transcriptionally repressed by BRCA1/ZBRK1 and predicts prognosis in breast cancer. PLoS ONE. 2020;15(5):e0233750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Farshchian M, Kivisaari A, Ala-Aho R, Riihila P, Kallajoki M, Grenman R, Peltonen J, Pihlajaniemi T, Heljasvaara R, Kahari VM. Serpin peptidase inhibitor clade A member 1 (SerpinA1) is a novel biomarker for progression of cutaneous squamous cell carcinoma. Am J Pathol. 2011;179(3):1110–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tan XF, Wu SS, Li SP, Chen Z, Chen F. Alpha-1 antitrypsin is a potential biomarker for hepatitis B. Virol J. 2011;8:274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chan HJ, Li H, Liu Z, Yuan YC, Mortimer J, Chen S. SERPINA1 is a direct estrogen receptor target gene and a predictor of survival in breast cancer patients. Oncotarget. 2015;6(28):25815–27.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Song Y, Lu M, Qiu H, Yin J, Luo K, Zhang Z, Jia X, Zheng G, Liu H, He Z. Activation of FOXO3a reverses 5-Fluorouracil resistance in human breast cancer cells. Exp Mol Pathol. 2018;105(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  30. Wang S, Huo D, Ogundiran TO, Ojengbede O, Zheng W, Nathanson KL, Nemesure B, Ambs S, Olopade OI, Zheng Y. Association of breast cancer risk and the mTOR pathway in women of African ancestry in ‘The Root’ Consortium. Carcinogenesis. 2017;38(8):789–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen D, Zhong Q. A tethering coherent protein in autophagosome maturation. Autophagy. 2012;8(6):985–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu M, Chen B, Pan X, Su J. Prognostic value of autophagy-related proteins in human gastric cancer. Cancer Manag Res. 2020;12:13527–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eissa S, Matboli M, Awad N, Kotb Y. Identification and validation of a novel autophagy gene expression signature for human bladder cancer patients. Tumour Biol. 2017;39(4):1010428317698360.

    Article  PubMed  Google Scholar 

  34. John AS, Rothman VL, Tuszynski GP. Thrombospondin-1 (TSP-1) stimulates expression of integrin alpha6 in human breast carcinoma cells: a downstream modulator of tsp-1-induced cellular adhesion. J Oncol. 2010;2010:645376.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Brooks DL, Schwab LP, Krutilina R, Parke DN, Sethuraman A, Hoogewijs D, Schorg A, Gotwald L, Fan M, Wenger RH, Seagroves TN. ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Mol Cancer. 2016;15:26.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015;160(1–2):48–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Giannakis M, Mu XJ, Shukla SA, Qian ZR, Cohen O, Nishihara R, Bahl S, Cao Y, Amin-Mansour A, Yamauchi M, Sukawa Y, Stewart C, Rosenberg M, Mima K, Inamura K, Nosho K, Nowak JA, Lawrence MS, Giovannucci EL, Chan AT, Ng K, Meyerhardt JA, Van Allen EM, Getz G, Gabriel SB, Lander ES, Wu CJ, Fuchs CS, Ogino S, Garraway LA. Genomic correlates of immune-cell infiltrates in colorectal Carcinoma. Cell Rep. 2016;15(4):857–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, Hollmann TJ, Bruggeman C, Kannan K, Li Y, Elipenahli C, Liu C, Harbison CT, Wang L, Ribas A, Wolchok JD, Chan TA. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189–99.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA. Cancer immunology Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, Sucker A, Hillen U, Foppen MHG, Goldinger SM, Utikal J, Hassel JC, Weide B, Kaehler KC, Loquai C, Mohr P, Gutzmer R, Dummer R, Gabriel S, Wu CJ, Schadendorf D, Garraway LA. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015;350(6257):207–11.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Muraro E, Comaro E, Talamini R, Turchet E, Miolo G, Scalone S, Militello L, Lombardi D, Spazzapan S, Perin T, Massarut S, Crivellari D, Dolcetti R, Martorelli D. Improved Natural Killer cell activity and retained anti-tumor CD8(+) T cell responses contribute to the induction of a pathological complete response in HER2-positive breast cancer patients undergoing neoadjuvant chemotherapy. J Transl Med. 2015;13:204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Garaud S, Buisseret L, Solinas C, Gu-Trantien C, de Wind A, Van den Eynden G, Naveaux C, Lodewyckx JN, Boisson A, Duvillier H, Craciun L, Ameye L, Veys I, Paesmans M, Larsimont D, Piccart-Gebhart M, Willard-Gallo K. Tumor infiltrating B-cells signal functional humoral immune responses in breast cancer. JCI Insight. 2019. https://doi.org/10.1172/jci.insight.129641.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the Public welfare project of Jinhua Science and Technology Plan, (2021–4-045).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: FW. Data curation: FW. Formal analysis: LF. Methodology: LF. Software: BF. Validation: BF. Investigation: CF. Writing—original draft: FW. Writing—review & editing: LF.

Corresponding author

Correspondence to Fan Wang.

Ethics declarations

Conflict of interest

Author Fan Wang declares that he/she has no conflict of interest. Author Linghui Fang declares that he/she has no conflict of interest. Author Bifei Fu declares that he/she has no conflict of interest. Author Chen Fan declares that he/she has no conflict of interest.

Ethics approval and consent to participate

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Fang, L., Fu, B. et al. Construction of a prognostic risk assessment model for HER2 + breast cancer based on autophagy-related genes. Breast Cancer 30, 478–488 (2023). https://doi.org/10.1007/s12282-023-01440-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-023-01440-x

Keywords

Navigation