Skip to main content

Advertisement

Log in

Construction and characterization of a cuproptosis- and immune checkpoint-based LncRNAs signature for breast cancer risk stratification

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

Cuproptosis is the most recently identified form of cell death, and copper homeostasis is an important cancer therapeutic target. However, the therapeutic benefits of cuproptosis-targeted treatment in BRCA remain undetermined. This study utilized LncRNAs linked to cuproptosis genes and immune checkpoint genes to generate a BRCA predictive signature.

Methods

We screened a population of LncRNAs that correlated with both cuproptosis genes and immune checkpoint genes and used ten of these LncRNAs to construct a prognosis-predictive signature. We then validated and proved the efficacy of the signature in predicting the prognosis of BRCA patients. We also unraveled the relationship between the signature and the immunological milieu, immune function, and susceptibility to chemotherapy.

Results

The signature derived from the ten cuproptosis- and immune-related prognostic LncRNAs (CuImP-LncRNAs) can be implied to categorize patients into two groups, including the high- and low-risk groups. The value of the signature was validated, and the risk score was verified as an independent prognostic indicator. The TIME and TMB distribution patterns and chemosensitivity were depicted in the high- and low-risk groups, respectively. Patients of the high-risk group with a suppressive immunological intratumor context were more sensitive to a broad range of antitumor agents. In contrast, low-risk individuals with active immune function responded more favorably to immunotherapy.

Conclusion

Our findings provided a novel and effective model for predicting BRCA prognosis and the propensity to different treatment modalities, thus contributing to the optimization of personalized BRCA therapy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets used in this study can be found in the TCGA database (https://portal.gdc.cancer.gov), GSEA (http://www.gsea-msigdb.org/gsea/index.jsp), TIMER database (http://cistrome.dfci.harvard.edu/TIMER/), and GDSC (https://www.cancerrxgene.org/).

Abbreviations

CuImP-LncRNAs:

Cuproptosis- and immune-related prognostic LncRNAs

TCGA:

The Cancer Genome Atlas

TIME:

Tumor immune microenvironment

TMB:

Tumor mutation burden

LASSO:

Least absolute shrinkage and selection operator

GDSC:

Genomics of drug sensitivity in cancer

OS:

Overall survival

PFS:

Progression-free survival

IPS:

Immunophenoscore

ROC:

Receiver operator characteristic

AUC:

Area under the ROC curve

PCA:

Principal component analysis

IC50:

Half-maximal inhibitory concentration

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.

    Article  PubMed  Google Scholar 

  2. Miller KD, Fidler-Benaoudia M, Keegan TH, Hipp HS, Jemal A, Siegel RL. Cancer statistics for adolescents and young adults, 2020. CA Cancer J Clin. 2020;70(6):443–59.

    Article  PubMed  Google Scholar 

  3. Ruddy KJ, Gelber S, Tamimi RM, Schapira L, Come SE, Meyer ME, et al. Breast cancer presentation and diagnostic delays in young women. Cancer. 2014;120(1):20–5.

    Article  PubMed  Google Scholar 

  4. Anders CK, Johnson R, Litton J, Phillips M, Bleyer A. Breast cancer before age 40 years. Semin Oncol. 2009;36(3):237–49.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yu F, Quan F, Xu J, Zhang Y, Xie Y, Zhang J, et al. Breast cancer prognosis signature: linking risk stratification to disease subtypes. Brief Bioinform. 2019;20(6):2130–40.

    Article  CAS  PubMed  Google Scholar 

  6. Bao G, Xu R, Wang X, Ji J, Wang L, Li W, et al. Identification of lncRNA signature associated with pan-cancer prognosis. IEEE J Biomed Health Inform. 2021;25(6):2317–28.

    Article  PubMed  Google Scholar 

  7. Bandmann O, Weiss KH, Kaler SG. Wilson’s disease and other neurological copper disorders. Lancet Neurol. 2015;14(1):103–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Denoyer D, Masaldan S, La Fontaine S, Cater MA. Targeting copper in cancer therapy: “Copper That Cancer.” Metallom Integr Biometal Sci. 2015;7(11):1459–76.

    Article  CAS  Google Scholar 

  9. Wang W, Wang X, Luo J, Chen X, Ma K, He H, et al. Serum copper level and the copper-to-zinc ratio could be useful in the prediction of lung cancer and its prognosis: a case–control study in Northeast China. Nutr Cancer. 2021;73(10):1908–15.

    Article  CAS  PubMed  Google Scholar 

  10. Oliveri V. Selective targeting of cancer cells by copper ionophores: an overview. Front Mol Biosci. 2022;9: 841814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shanbhag VC, Gudekar N, Jasmer K, Papageorgiou C, Singh K. Copper metabolism as a unique vulnerability in cancer. Biochim Biophys Acta Mol Cell Res. 2021;2:118893.

    Article  Google Scholar 

  12. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375(6586):1254–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Choi R, Kim M-J, Sohn I, Kim S, Kim I, Ryu JM, et al. Serum trace elements and their associations with breast cancer subgroups in Korean breast cancer patients. Nutrients. 2018;11(1):2.

    Article  Google Scholar 

  14. Blockhuys S, Brady DC, Wittung-Stafshede P. Evaluation of copper chaperone ATOX1 as prognostic biomarker in breast cancer. Breast Cancer (Tokyo, Japan). 2020;27(3):505–9.

    Article  PubMed  Google Scholar 

  15. Milacic V, Jiao P, Zhang B, Yan B, Dou QP. Novel 8-hydroxylquinoline analogs induce copper-dependent proteasome inhibition and cell death in human breast cancer cells. Int J Oncol. 2009;35(6):1481–91.

    CAS  PubMed  Google Scholar 

  16. André F, Bachelot T, Commo F, Campone M, Arnedos M, Dieras V, et al. Comparative genomic hybridisation array and DNA sequencing to direct treatment of metastatic breast cancer: a multicentre, prospective trial (SAFIR01/UNICANCER). Lancet Oncol. 2014;15(3):267–74.

    Article  PubMed  Google Scholar 

  17. Karn T, Denkert C, Weber KE, Holtrich U, Hanusch C, Sinn BV, et al. Tumor mutational burden and immune infiltration as independent predictors of response to neoadjuvant immune checkpoint inhibition in early TNBC in GeparNuevo. Ann Oncol. 2020;31(9):1216–22.

    Article  CAS  PubMed  Google Scholar 

  18. Voli F, Valli E, Lerra L, Kimpton K, Saletta F, Giorgi FM, et al. Intratumoral copper modulates PD-L1 expression and influences tumor immune evasion. Can Res. 2020;80(19):4129–44.

    Article  CAS  Google Scholar 

  19. Liu YL, Bager CL, Willumsen N, Ramchandani D, Kornhauser N, Ling L, et al. Tetrathiomolybdate (TM)-associated copper depletion influences collagen remodeling and immune response in the pre-metastatic niche of breast cancer. NPJ Breast Cancer. 2021;7(1):108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu F-F, Liu C-J, Liu L-L, Zhang Q, Guo A-Y. Expression profile of immune checkpoint genes and their roles in predicting immunotherapy response. Brief Bioinform. 2021;22:3.

    Article  Google Scholar 

  21. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18(1):248–62.

    Article  CAS  PubMed  Google Scholar 

  22. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al. Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41:955–61.

    Article  CAS  Google Scholar 

  23. Mayakonda A, Lin D-C, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28(11):1747–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6.

    Article  Google Scholar 

  26. Li B, Zhang B, Wang X, Zeng Z, Huang Z, Zhang L, et al. Expression signature, prognosis value, and immune characteristics of Siglec-15 identified by pan-cancer analysis. Oncoimmunology. 2020;9(1):1807291.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen Y-T, Xiang D, Zhao X-Y, Chu X-Y. Upregulation of lncRNA NIFK-AS1 in hepatocellular carcinoma by mA methylation promotes disease progression and sorafenib resistance. Hum Cell. 2021;34(6):1800–11.

    Article  CAS  PubMed  Google Scholar 

  28. Santangelo A, Rossato M, Lombardi G, Benfatto S, Lavezzari D, De Salvo GL, et al. A molecular signature associated with prolonged survival in glioblastoma patients treated with regorafenib. Neuro Oncol. 2021;23(2):264–76.

    Article  CAS  PubMed  Google Scholar 

  29. Shi G-J, Zhou Q, Zhu Q, Wang L, Jiang G-Q. A novel prognostic model associated with the overall survival in patients with breast cancer based on lipid metabolism-related long noncoding RNAs. J Clin Lab Anal. 2022;2:e24384.

    Google Scholar 

  30. Peggs KS, Quezada SA, Allison JP. Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol Rev. 2008;224:141–65.

    Article  CAS  PubMed  Google Scholar 

  31. Xu M, Li Y, Li W, Zhao Q, Zhang Q, Le K, et al. Immune and stroma related genes in breast cancer: a comprehensive analysis of tumor microenvironment based on the cancer genome atlas (TCGA) database. Front Med. 2020;7:64.

    Article  Google Scholar 

  32. Holmgaard RB, Zamarin D, Munn DH, Wolchok JD, Allison JP. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med. 2013;210(7):1389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang M, Du Q, Jin J, Wei Y, Lu Y, Li Q. LAG3 and its emerging role in cancer immunotherapy. Clin Transl Med. 2021;11(3): e365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Samstein RM, Lee C-H, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51(2):202–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang Z, Hao R, Guo Q, Zhang S, Wang X. TP53 mutation infers a poor prognosis and is correlated to immunocytes infiltration in breast cancer. Front Cell Dev Biol. 2021;9: 759154.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Duffy MJ, Synnott NC, Crown J. Mutant p53 in breast cancer: potential as a therapeutic target and biomarker. Breast Cancer Res Treat. 2018;170(2):213–9.

    Article  CAS  PubMed  Google Scholar 

  37. O’Day S, Gonzalez R, Lawson D, Weber R, Hutchins L, Anderson C, et al. Phase II, randomized, controlled, double-blinded trial of weekly elesclomol plus paclitaxel versus paclitaxel alone for stage IV metastatic melanoma. J Clin Oncol. 2009;27(32):5452–8.

    Article  CAS  PubMed  Google Scholar 

  38. Qu Y, Wang J, Sim M-S, Liu B, Giuliano A, Barsoum J, et al. Elesclomol, counteracted by Akt survival signaling, enhances the apoptotic effect of chemotherapy drugs in breast cancer cells. Breast Cancer Res Treat. 2010;121(2):311–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all research groups who established and updated all open-access databases used in this study.

Funding

This study was supported by grants from the Lanzhou Science and Technology Bureau (2022-ZD-62) and the Natural Science Foundation of Gansu Province (21JR7RA662).

Author information

Authors and Affiliations

Authors

Contributions

YL and JP conceived and designed this study, and JP conducted the data collection and analyses. YL reviewed the analysis results and wrote the manuscript. FN revised the manuscript. All authors agreed to the final manuscript.

Corresponding author

Correspondence to Jianying Pei.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this study.

Ethical approval

This article does not contain any studies with human participants or animals performed by any authors.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 10 KB)

Supplementary file2 (TIF 12726 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Na, F. & Pei, J. Construction and characterization of a cuproptosis- and immune checkpoint-based LncRNAs signature for breast cancer risk stratification. Breast Cancer 30, 393–411 (2023). https://doi.org/10.1007/s12282-023-01434-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-023-01434-9

Keywords

Navigation