Skip to main content

Advertisement

Log in

Dynamic tumor microenvironment, molecular heterogeneity, and distinct immunologic portrait of triple-negative breast cancer: an impact on classification and treatment approaches

  • Review Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Heterogeneity of the tumor microenvironment (TME) and the lack of a definite targetable receptor in triple-negative breast cancer (TNBC) has carved a niche for this cancer as a particularly therapeutically challenging form of breast cancer. However, recent advances in high-throughput genomic analysis have provided new insights into the unique microenvironment and defining characteristics of various subsets of TNBC. This improved understanding has contributed to the development of novel therapeutic strategies including targeted therapies such as PARP inhibitors and CDK inhibitors. Moreover, the recent FDA approval of the immune checkpoint inhibitor against programmed cell death protein 1 (PD-1), pembrolizumab and atezolizumab, holds the promise of improving the quality of life and increasing the overall survival of TNBC patients. This recent approval is one of the many therapeutically novel strategies that are currently being exploited in clinical trials toward eventual contribution to the oncologist’s toolbox against TNBC. In this review, we comprehensively discuss TNBC’s distinct TME and its immunophenotype. Furthermore, we highlight the histological and molecular classification of this cancer. More importantly, we describe how these characteristics and classifications contribute to the current standards of care and how they steer the development of newer and more targeted therapies toward achieving peak therapeutic goals in the treatment of TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

The datasets/or images are available from the corresponding author upon reasonable request.

References

  1. Bray F, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  2. Fallahpour S, et al. Breast cancer survival by molecular subtype: a population-based analysis of cancer registry data. CMAJ Open. 2017;5(3):E734–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363(20):1938–48.

    Article  CAS  PubMed  Google Scholar 

  4. Huang S, et al. Integrative analysis reveals subtype-specific regulatory determinants in triple negative breast cancer. Cancers (Basel). 2019;11(4):507.

    Article  CAS  PubMed  Google Scholar 

  5. Goncalves H Jr, et al. Survival study of triple-negative and non-triple-negative breast cancer in a Brazilian cohort. Clin Med Insights Oncol. 2018;12:1179554918790563.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xie N, et al. Clinicopathological characteristics and treatment strategies of triple-negative breast cancer patients with a survival longer than 5 years. Front Oncol. 2020;10: 617593.

    Article  PubMed  Google Scholar 

  7. Hancock BA, et al. Profiling molecular regulators of recurrence in chemorefractory triple-negative breast cancers. Breast Cancer Res. 2019;21(1):87.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Witzel I, et al. Treatment and outcomes of patients in the brain metastases in breast cancer network registry. Eur J Cancer. 2018;102:1–9.

    Article  CAS  PubMed  Google Scholar 

  9. Watson CJ, Khaled WT. Mammary development in the embryo and adult: new insights into the journey of morphogenesis and commitment. Development (Cambridge, England) 2020;147(22):169862

  10. Anders C, Carey LA. Understanding and treating triple-negative breast cancer. Oncology (Williston Park). 2008;22(11):1233–9 (discussion 1239-40, 1243).

    PubMed  Google Scholar 

  11. Van Keymeulen A, et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature. 2011;479(7372):189–93.

    Article  PubMed  Google Scholar 

  12. Kim MR, et al. TET2 directs mammary luminal cell differentiation and endocrine response. Nat Commun. 2020;11(1):4642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sarrio D, et al. Epithelial and mesenchymal subpopulations within normal basal breast cell lines exhibit distinct stem cell/progenitor properties. Stem Cells. 2012;30(2):292–303.

    Article  CAS  PubMed  Google Scholar 

  14. Bertucci F, et al. How basal are triple-negative breast cancers? Int J Cancer. 2008;123(1):236–40.

    Article  CAS  PubMed  Google Scholar 

  15. Lehmann BD, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Prat A, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12(5):R68.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Deepak KGK, et al. Tumor microenvironment: challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res. 2020;153: 104683.

    Article  CAS  PubMed  Google Scholar 

  18. Wein L, et al. Clinical validity and utility of tumor-infiltrating lymphocytes in routine clinical practice for breast cancer patients: current and future directions. Front Oncol. 2017;7:156.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang WJ, et al. Tumor-associated macrophages correlate with phenomenon of epithelial-mesenchymal transition and contribute to poor prognosis in triple-negative breast cancer patients. J Surg Res. 2018;222:93–101.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou J, et al. Cancer-associated fibroblasts correlate with tumor-associated macrophages infiltration and lymphatic metastasis in triple negative breast cancer patients. J Cancer. 2018;9(24):4635–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sahai E, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20(3):174–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He J, et al. Inhibition of USP2 eliminates cancer stem cells and enhances TNBC responsiveness to chemotherapy. Cell Death Dis. 2019;10(4):285.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liubomirski Y, et al. Tumor-stroma-inflammation networks promote pro-metastatic chemokines and aggressiveness characteristics in triple-negative breast cancer. Front Immunol. 2019;10:757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. D’Esposito V, et al. Adipose microenvironment promotes triple negative breast cancer cell invasiveness and dissemination by producing CCL5. Oncotarget. 2016;7(17):24495–509.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu L, et al. Cancer-associated adipocyte-derived G-CSF promotes breast cancer malignancy via Stat3 signaling. J Mol Cell Biol. 2020;12(9):723–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lopatina T, et al. Targeting IL-3Ralpha on tumor-derived endothelial cells blunts metastatic spread of triple-negative breast cancer via extracellular vesicle reprogramming. Oncogenesis. 2020;9(10):90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim J, et al. Heterogeneous perivascular cell coverage affects breast cancer metastasis and response to chemotherapy. JCI Insight. 2016;1(21): e90733.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mirando AC, et al. Regulation of the tumor immune microenvironment and vascular normalization in TNBC murine models by a novel peptide. Oncoimmunology. 2020;9(1):1760685.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sun H, et al. Cancer stem-like cells directly participate in vasculogenic mimicry channels in triple-negative breast cancer. Cancer Biol Med. 2019;16(2):299–311.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bai J, et al. HIF-2alpha regulates CD44 to promote cancer stem cell activation in triple-negative breast cancer via PI3K/AKT/mTOR signaling. World J Stem Cells. 2020;12(1):87–99.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Maria Badowska-Kozakiewicz A, Piotr Budzik M. Triple-negative breast cancer: expression of hypoxia-inducible factor 1α in triple-negative breast cancer with metastasis to lymph nodes. Breast Cancer Surg 2018. Available: https://www.intechopen.com/chapters/60171, https://doi.org/10.5772/intechopen.75354

  32. Lappano R, et al. The IL1beta-IL1R signaling is involved in the stimulatory effects triggered by hypoxia in breast cancer cells and cancer-associated fibroblasts (CAFs). J Exp Clin Cancer Res. 2020;39(1):153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alcaraz LB, et al. Cathepsin D exacerbates SPARC-driven aggressiveness by limited proteolysis in triple-negative breast cancer. bioRxiv 2020 p. 2020.10.22.350082.

  34. Pawar A, Prabhu P. Nanosoldiers: a promising strategy to combat triple negative breast cancer. Biomed Pharmacother. 2019;110:319–41.

    Article  CAS  PubMed  Google Scholar 

  35. Mah EJ, et al. Collagen density modulates triple-negative breast cancer cell metabolism through adhesion-mediated contractility. Sci Rep. 2018;8(1):17094.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wishart AL et al. Decellularized extracellular matrix scaffolds identify full-length collagen VI as a driver of breast cancer cell invasion in obesity and metastasis. Sci Adv 2020;6(43):3175

  37. Xiong G, et al. Prolyl-4-hydroxylase alpha subunit 2 promotes breast cancer progression and metastasis by regulating collagen deposition. BMC Cancer. 2014;14:1.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kuczek DE, et al. Collagen density regulates the activity of tumor-infiltrating T cells. J Immunother Cancer. 2019;7(1):68.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim H, et al. CTGF regulates cell proliferation, migration, and glucose metabolism through activation of FAK signaling in triple-negative breast cancer. Oncogene. 2021;40(15):2667–81.

    Article  CAS  PubMed  Google Scholar 

  40. Kala C, et al. Clinical and Cyto-morphological characterization of triple negative breast cancer. J Cytol. 2019;36(2):84–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mills MN, et al. Histologic heterogeneity of triple negative breast cancer: a National Cancer Centre Database analysis. Eur J Cancer. 2018;98:48–58.

    Article  PubMed  Google Scholar 

  42. Liao HY, et al. The clinicopathological features and survival outcomes of different histological subtypes in triple-negative breast cancer. J Cancer. 2018;9(2):296–303.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ishikawa Y, et al. Triple-negative breast cancer: histological subtypes and immunohistochemical and clinicopathological features. Cancer Sci. 2011;102(3):656–62.

    Article  CAS  PubMed  Google Scholar 

  44. Wang XX, et al. Difference in characteristics and outcomes between medullary breast carcinoma and invasive ductal carcinoma: a population based study from SEER 18 database. Oncotarget. 2016;7(16):22665–73.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Marchio C, Weigelt B, Reis-Filho JS. Adenoid cystic carcinomas of the breast and salivary glands (or “The strange case of Dr Jekyll and Mr Hyde” of exocrine gland carcinomas). J Clin Pathol. 2010;63(3):220–8.

    Article  PubMed  Google Scholar 

  46. Koo JS, Jung W. Clinicopathlogic and immunohistochemical characteristics of triple negative invasive lobular carcinoma. Yonsei Med J. 2011;52(1):89–97.

    Article  PubMed  Google Scholar 

  47. Rakha EA, et al. Invasive lobular carcinoma of the breast: response to hormonal therapy and outcomes. Eur J Cancer. 2008;44(1):73–83.

    Article  PubMed  Google Scholar 

  48. Choi HJ, et al. 265POncologic outcome of invasive lobular carcinoma: is it different from that of invasive ductal carcinoma? Annal Oncol. 2019;30(5):v90.

    Article  Google Scholar 

  49. Li Y, et al. Comparative prognostic analysis for triple-negative breast cancer with metaplastic and invasive ductal carcinoma. J Clin Pathol. 2019;72(6):418–24.

    Article  CAS  PubMed  Google Scholar 

  50. Nelson RA, et al. Survival outcomes of metaplastic breast cancer patients: results from a US population-based analysis. Ann Surg Oncol. 2015;22(1):24–31.

    Article  PubMed  Google Scholar 

  51. Tsutsumi Y. Apocrine carcinoma as triple-negative breast cancer: novel definition of apocrine-type carcinoma as estrogen/progesterone receptor-negative and androgen receptor-positive invasive ductal carcinoma. Jpn J Clin Oncol. 2012;42(5):375–86.

    Article  PubMed  Google Scholar 

  52. Lehmann BD, Pietenpol JA. Clinical implications of molecular heterogeneity in triple negative breast cancer. Breast. 2015;24(Suppl 2):S36-40.

    Article  PubMed  Google Scholar 

  53. Prat A, et al. Response and survival of breast cancer intrinsic subtypes following multi-agent neoadjuvant chemotherapy. BMC Med. 2015;13:303.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pareja F, et al. Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants. NPJ Breast Cancer. 2016;2:16036.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Aslan M, et al. Oncogene-mediated metabolic gene signature predicts breast cancer outcome. npj Breast Cancer. 2021;7(1):141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nagayama A, et al. Novel antibody-drug conjugates for triple negative breast cancer. Ther Adv Med Oncol. 2020;12:1758835920915980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang YH, et al. Expression pattern and prognostic impact of glycoprotein non-metastatic B (GPNMB) in triple-negative breast cancer. Sci Rep. 2021;11(1):12171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lehmann BD, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS ONE. 2016;11(6): e0157368.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Burstein MD, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21(7):1688–98.

    Article  CAS  PubMed  Google Scholar 

  60. Jezequel P, et al. Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response. Breast Cancer Res. 2015;17:43.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bareche Y, et al. Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis. Ann Oncol. 2018;29(4):895–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shangary S, Wang S. Targeting the MDM2-p53 interaction for cancer therapy. Clin Cancer Res. 2008;14(17):5318–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene. 2005;24(17):2899–908.

    Article  CAS  PubMed  Google Scholar 

  64. Shi Y, et al. Therapeutic landscape in mutational triple negative breast cancer. Mol Cancer. 2018;17(1):99.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gao C, et al. Context-dependent roles of MDMX (MDM4) and MDM2 in breast cancer proliferation and circulating tumor cells. Breast Cancer Res. 2019;21(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mayo LD, et al. PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. J Biol Chem. 2002;277(7):5484–9.

    Article  CAS  PubMed  Google Scholar 

  67. Wang D-Y, et al. A subgroup of microRNAs defines PTEN-deficient, triple-negative breast cancer patients with poorest prognosis and alterations in RB1, MYC, and Wnt signaling. Breast Cancer Res. 2019;21(1):18.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hsieh JK, et al. RB regulates the stability and the apoptotic function of p53 via MDM2. Mol Cell. 1999;3(2):181–93.

    Article  CAS  PubMed  Google Scholar 

  69. Witkiewicz AK, Knudsen ES. Retinoblastoma tumor suppressor pathway in breast cancer: prognosis, precision medicine, and therapeutic interventions. Breast Cancer Res. 2014;16(3):207.

    PubMed  PubMed Central  Google Scholar 

  70. Liu L, et al. BRCAness as a prognostic indicator in patients with early breast cancer. Sci Rep. 2020;10(1):21173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tian T, et al. Evaluation of the BRCAness phenotype and its correlations with clinicopathological features in triple-negative breast cancers. Hum Pathol. 2019;84:231–8.

    Article  CAS  PubMed  Google Scholar 

  72. Chen H, et al. Association between BRCA status and triple-negative breast cancer: a meta-analysis. Front Pharmacol. 2018;9:909.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Costa R, et al. Targeting epidermal growth factor receptor in triple negative breast cancer: new discoveries and practical insights for drug development. Cancer Treat Rev. 2017;53:111–9.

    Article  CAS  PubMed  Google Scholar 

  74. Brand TM, et al. The nuclear epidermal growth factor receptor signaling network and its role in cancer. Discov Med. 2011;12(66):419–32.

    PubMed  PubMed Central  Google Scholar 

  75. Shim KG, et al. Inhibitory receptors induced by VSV viroimmunotherapy are not necessarily targets for improving treatment efficacy. Mol Ther. 2017;25(4):962–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Molloy NH, Read DE, Gorman AM. Nerve growth factor in cancer cell death and survival. Cancers (Basel). 2011;3(1):510–30.

    Article  PubMed  Google Scholar 

  77. Chakravarthy R, Mnich K, Gorman AM. Nerve growth factor (NGF)-mediated regulation of p75(NTR) expression contributes to chemotherapeutic resistance in triple negative breast cancer cells. Biochem Biophys Res Commun. 2016;478(4):1541–7.

    Article  CAS  PubMed  Google Scholar 

  78. Gao HF, et al. Prognostic significance of mesenchymal-epithelial transition in triple-negative breast cancers. Clin Breast Cancer. 2018;18(5):e961–6.

    Article  PubMed  Google Scholar 

  79. Pohl SG, et al. Wnt signaling in triple-negative breast cancer. Oncogenesis. 2017;6(4): e310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ireland L, et al. Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer. Oncogene. 2018;37(15):2022–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Davison Z, et al. Insulin-like growth factor-dependent proliferation and survival of triple-negative breast cancer cells: implications for therapy. Neoplasia. 2011;13(6):504–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li CJ, et al. The molecular mechanism of epithelial-mesenchymal transition for breast carcinogenesis. Biomolecules. 2019;9(9):476.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kim S, et al. Elevated TGF-beta1 and -beta2 expression accelerates the epithelial to mesenchymal transition in triple-negative breast cancer cells. Cytokine. 2015;75(1):151–8.

    Article  CAS  PubMed  Google Scholar 

  84. Cheung SY, et al. Role of epithelial-mesenchymal transition markers in triple-negative breast cancer. Breast Cancer Res Treat. 2015;152(3):489–98.

    Article  CAS  PubMed  Google Scholar 

  85. Vijay GV, et al. GSK3beta regulates epithelial-mesenchymal transition and cancer stem cell properties in triple-negative breast cancer. Breast Cancer Res. 2019;21(1):37.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chen JH, et al. Upregulated SCUBE2 expression in breast cancer stem cells enhances triple negative breast cancer aggression through modulation of notch signaling and epithelial-to-mesenchymal transition. Exp Cell Res. 2018;370(2):444–53.

    Article  CAS  PubMed  Google Scholar 

  87. Riaz SK, et al. Influence of SHH/GLI1 axis on EMT mediated migration and invasion of breast cancer cells. Sci Rep. 2019;9(1):6620.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Rampurwala M, Wisinski KB, O’Regan R. Role of the androgen receptor in triple-negative breast cancer. Clin Adv Hematol Oncol. 2016;14(3):186–93.

    PubMed  PubMed Central  Google Scholar 

  89. Mina A, Yoder R, Sharma P. Targeting the androgen receptor in triple-negative breast cancer: current perspectives. Onco Targets Ther. 2017;10:4675–85.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kong Y, et al. Effect of Bicalutamide on the proliferation and invasion of human triple negative breast cancer MDA-MB-231 cells. Medicine. 2020;99(17): e19822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Stovgaard ES, et al. Triple negative breast cancer—prognostic role of immune-related factors: a systematic review. Acta Oncol. 2018;57(1):74–82.

    Article  CAS  PubMed  Google Scholar 

  92. Keren L, et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell. 2018;174(6):1373-1387.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lv Y, et al. Immune cell infiltration-based characterization of triple-negative breast cancer predicts prognosis and chemotherapy response markers. Front Genet. 2021;12: 616469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. He Y, et al. Classification of triple-negative breast cancers based on Immunogenomic profiling. J Exp Clin Cancer Res. 2018;37(1):327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Emens LA, et al. The tumor microenvironment (TME) and atezolizumab + nab-paclitaxel (A+nP) activity in metastatic triple-negative breast cancer (mTNBC): IMpassion130. J Clin Oncol. 2021;39(15):1006–1006.

    Article  Google Scholar 

  96. Romero-Cordoba S, et al. Decoding immune heterogeneity of triple negative breast cancer and its association with systemic inflammation. Cancers (Basel). 2019;11(7):911.

    Article  CAS  PubMed  Google Scholar 

  97. Park JH, Ahn JH, Kim SB. How shall we treat early triple-negative breast cancer (TNBC): from the current standard to upcoming immuno-molecular strategies. ESMO Open. 2018;3(1): e000357.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Li CH, et al. Current treatment landscape for patients with locally recurrent inoperable or metastatic triple-negative breast cancer: a systematic literature review. Breast Cancer Res. 2019;21(1):143.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Cardoso F, et al. Early breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-updagger. Ann Oncol. 2019;30(8):1194–220.

    Article  CAS  PubMed  Google Scholar 

  100. Cardoso F, et al. 4th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 4)dagger. Ann Oncol. 2018;29(8):1634–57.

    Article  CAS  PubMed  Google Scholar 

  101. Fitzpatrick A, Tutt A. Controversial issues in the neoadjuvant treatment of triple-negative breast cancer. Ther Adv Med Oncol. 2019;11:1758835919882581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lebert JM, et al. Advances in the systemic treatment of triple-negative breast cancer. Curr Oncol. 2018;25(Suppl 1):S142–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. von Minckwitz G, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol. 2012;30(15):1796–804.

    Article  Google Scholar 

  104. Bardia A, et al. Sacituzumab Govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med. 2019;380(8):741–51.

    Article  CAS  PubMed  Google Scholar 

  105. Kurani H, et al. DOT1L is a novel cancer stem cell target for triple-negative breast cancer. Clin Cancer Res. 2022;28(9):1948–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sharma M, et al. Simultaneously targeting cancer-associated fibroblasts and angiogenic vessel as a treatment for TNBC. J Exp Med 2021;218(4):p. e20200712

  107. Yang SJ, et al. Tumor-derived exosomal circPSMA1 facilitates the tumorigenesis, metastasis, and migration in triple-negative breast cancer (TNBC) through miR-637/Akt1/beta-catenin (cyclin D1) axis. Cell Death Dis. 2021;12(5):420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xing L, et al. LncRNA HAND2-AS1 suppressed the growth of triple negative breast cancer via reducing secretion of MSCs derived exosomal miR-106a-5p. Aging (Albany NY). 2020;13(1):424–36.

    Article  PubMed  Google Scholar 

  109. Sulaiman A, et al. Targeting hypoxia sensitizes TNBC to cisplatin and promotes inhibition of both bulk and cancer stem cells. Int J Mol Sci. 2020;21(16):5788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chou Y-T, et al. Targeting triple-negative breast cancer with an aptamer-functionalized nanoformulation: a synergistic treatment that combines photodynamic and bioreductive therapies. J Nanobiotechnol. 2021;19(1):89.

    Article  CAS  Google Scholar 

  111. Carroll CP, et al. Targeting hypoxia regulated sodium driven bicarbonate transporters reduces triple negative breast cancer metastasis. Neoplasia. 2022;25:41–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mohammed MEA, Elhassan NM. Cytoskeletal and extracellular matrix proteins as markers for metastatic triple negative breast cancer. J Int Med Res. 2019;47(11):5767–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Phillips L, Gill AJ, Baxter RC. Novel prognostic markers in triple-negative breast cancer discovered by MALDI-mass spectrometry imaging. Front Oncol. 2019;9:379.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wang RX, et al. Predictive and prognostic value of Matrix metalloproteinase (MMP)-9 in neoadjuvant chemotherapy for triple-negative breast cancer patients. BMC Cancer. 2018;18(1):909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mehanna J, et al. Triple-negative breast cancer: current perspective on the evolving therapeutic landscape. Int J Womens Health. 2019;11:431–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pantelidou C, et al. PARP inhibitor efficacy depends on CD8(+) T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discov. 2019;9(6):722–37.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Li T, et al. Ribociclib (LEE011) suppresses cell proliferation and induces apoptosis of MDA-MB-231 by inhibiting CDK4/6-cyclin D-Rb-E2F pathway. Artif Cells Nanomed Biotechnol. 2019;47(1):4001–11.

    Article  CAS  PubMed  Google Scholar 

  118. Hwang S-Y, Park S, Kwon Y. Recent therapeutic trends and promising targets in triple negative breast cancer. Pharmacol Ther. 2019;199:30–57.

    Article  CAS  PubMed  Google Scholar 

  119. Mohamed RF, et al. Does bevacizumab carry a hope for metastatic triple-negative breast cancer in the era of immunotherapy? Anticancer Drugs. 2022;33(1):e604–e609.

  120. Diamond JR, et al. Phase Ib clinical trial of the anti-frizzled antibody vantictumab (OMP-18R5) plus paclitaxel in patients with locally advanced or metastatic HER2-negative breast cancer. Breast Cancer Res Treat. 2020;184(1):53–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. López-Nieva P, et al. More insights on the Use of γ-secretase inhibitors in cancer treatment. Oncologist. 2021;26(2):e298–305.

    Article  PubMed  Google Scholar 

  122. Bravaccini S, Maltoni R. Trop-2 therapy in metastatic triple-negative breast cancer in Italy: clinical opportunity and regulatory pitfalls. J Pers Med. 2021;11(11):1211.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bardia A, et al. Sacituzumab Govitecan in metastatic triple-negative breast cancer. N Engl J Med. 2021;384(16):1529–41.

    Article  CAS  PubMed  Google Scholar 

  124. Vahdat LT, et al. Glembatumumab vedotin for patients with metastatic, gpNMB overexpressing, triple-negative breast cancer (“METRIC”): a randomized multicenter study. NPJ Breast Cancer. 2021;7(1):57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yang S, Wei W, Zhao Q. B7–H3, a checkpoint molecule, as a target for cancer immunotherapy. Int J Biol Sci. 2020;16(11):1767–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Scribner JA, et al. Preclinical development of MGC018, a Duocarmycin-based antibody-drug conjugate targeting B7–H3 for solid cancer. Mol Cancer Ther. 2020;19(11):2235–44.

    Article  CAS  PubMed  Google Scholar 

  127. Bayerlova M, et al. Ror2 signaling and its relevance in breast cancer progression. Front Oncol. 2017;7:135.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lin CW, et al. A new immunochemical strategy for triple-negative breast cancer therapy. Sci Rep. 2021;11(1):14875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bai X, et al. Immunotherapy for triple-negative breast cancer: a molecular insight into the microenvironment, treatment, and resistance. J Natl Cancer Center. 2021;1(3):75–87.

    Article  Google Scholar 

  130. Barroso-Sousa R, et al. Nivolumab in combination with cabozantinib for metastatic triple-negative breast cancer: a phase II and biomarker study. NPJ Breast Cancer. 2021;7(1):110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Loibl S, et al. Durvalumab improves long-term outcome in TNBC: results from the phase II randomized GeparNUEVO study investigating neodjuvant durvalumab in addition to an anthracycline/taxane based neoadjuvant chemotherapy in early triple-negative breast cancer (TNBC). J Clin Oncol. 2021;39(15):506–506.

    Article  Google Scholar 

  132. Gandhi S, et al. Phase IIa study of alpha-DC1 vaccine against HER2/HER3, chemokine modulation regimen, and pembrolizumab in patients with asymptomatic brain metastasis from triple negative or HER2+ breast cancer. J Immunother Cancer 2020;8 (Suppl_3), A196-A197

  133. Overman MJ, et al. Safety, efficacy and pharmacodynamics (PD) of MEDI9447 (oleclumab) alone or in combination with durvalumab in advanced colorectal cancer (CRC) or pancreatic cancer (panc). J Clin Oncol. 2018;36(15):4123–4123.

    Article  Google Scholar 

  134. Telli ML, et al. Intratumoral plasmid IL12 expands CD8<sup>+</sup> T cells and induces a CXCR3 gene signature in triple-negative breast tumors that Sensitizes patients to anti–PD-1 therapy. Clin Cancer Res. 2021;27(9):2481–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fang WB, et al. Expression of CCL2/CCR2 signaling proteins in breast carcinoma cells is associated with invasive progression. Sci Rep. 2021;11(1):8708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bu MT, et al. The roles of TGF-β and VEGF pathways in the suppression of antitumor immunity in melanoma and other solid tumors. Pharmacol Ther. 2022;240: 108211.

    Article  CAS  PubMed  Google Scholar 

  137. Raja J, et al. Oncolytic virus immunotherapy: future prospects for oncology. J Immunother Cancer. 2018;6(1):140.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Dees S, et al. Emerging CAR-T cell therapy for the treatment of triple-negative breast cancer. Mol Cancer Ther. 2020;19(12):2409–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Writing original draft, prepare tables and figures: HMN; writing, prepare table and figure for section ADC and immunotherapies: WP; review and editing: HMN, WP, MO, and LW; conceptualization, funding acquisition and supervision: LW.

Corresponding author

Correspondence to Laurence Wood.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, HM., Paulishak, W., Oladejo, M. et al. Dynamic tumor microenvironment, molecular heterogeneity, and distinct immunologic portrait of triple-negative breast cancer: an impact on classification and treatment approaches. Breast Cancer 30, 167–186 (2023). https://doi.org/10.1007/s12282-022-01415-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-022-01415-4

Keywords

Navigation