Skip to main content

Advertisement

Log in

The collagenase of the bacterium Clostridium histolyticum does not favor metastasis of breast cancer

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

Breast cancer is the most common malignancy among women worldwide. As survival rates increase, breast reconstruction and quality of life gain importance. Of all women undergoing breast reconstruction, approximately, 70% opt for silicone implants and 50% of those develop capsular contracture, the most prevalent long-term complication. The collagenase of the bacterium Clostridium histolyticum (CCH) showed promising results in the therapy of capsule contracture; however, its influence on residual cancer cells is unknown. The aim of this study was to investigate whether CCH-treatment negatively impacts breast cancer cells in vitro and in vivo.

Methods

MDA-MB-231 and MCF-7 cells were used in this study. In vitro, we tested the influence of CCH on proliferation, wound healing, migration and cell cycle by MTT-assay, scratch-assay, transwell-migration-assay, and flow cytometry.

In vivo, solid tumors were induced in immune-deficient mice. CCH was injected into the tumors and tumor growth and metastasis formation was monitored by caliper measurement, in vivo bioluminescence imaging and histology. Gene expression analysis was performed by microarray including 27,190 genes.

Results

CCH-incubation led to a dose-dependent reduction in proliferation for both cell lines, while wound healing was reduced only in MDA-MB-231 cells. No morphological alterations were monitored in cell cycle or apoptosis. In vivo, bioluminescence imaging and histology did not show any evidence of metastasis. Although CCH led to changes in gene expression of breast cancer cells, no relevant alterations in metastasis-related genes were monitored.

Conclusion

CCH has no impact on tumor growth or metastasis formation in vitro and in vivo. This paves the way for first clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer Targets Ther. 2019;11:151.

    Article  Google Scholar 

  2. Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res. 2017;50(1):33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Miller AM, Steiner CA, Barrett ML, Fingar KR, Elixhauser A. Breast reconstruction surgery for mastectomy in hospital inpatient and ambulatory settings, 2009–2014: statistical brief# 228. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville: Agency for Healthcare Research and Quality (US); 2017.

  4. Pomahac B, Recht A, May JW, Hergrueter CA, Slavin SA. New trends in breast cancer management: is the era of immediate breast reconstruction changing? Ann Surg. 2006;244(2):282–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wick G, Backovic A, Rabensteiner E, Plank N, Schwentner C, Sgonc R. The immunology of fibrosis: innate and adaptive responses. Trends Immunol. 2010;31(3):110–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gurunluoglu R, Sacak B, Arton J. Outcomes analysis of patients undergoing autoaugmentation after breast implant removal. Plast Reconstr Surg. 2013;132(2):304–15.

    Article  CAS  PubMed  Google Scholar 

  7. Diehm YF, Hirche C, Berger MR, Heil J, Golatta M, Kotsougiani D, et al. The collagenase of the bacterium Clostridium histolyticum in the treatment of irradiation-induced capsular contracture. Aesthetic Plast Surg. 2019;43(3):836–44.

    Article  PubMed  Google Scholar 

  8. Fischer S, Diehm Y, Henzler T, Berger MR, Kolbenschlag J, Latz A, et al. Long-term effects of the collagenase of the bacterium Clostridium histolyticum for the treatment of capsular fibrosis after silicone implants. Aesthetic plast Surg. 2016;41:211–20.

    Article  PubMed  Google Scholar 

  9. Fischer S, Hirche C, Diehm Y, Nuutila K, Kiefer J, Gazyakan E, et al. Efficacy and safety of the collagenase of the bacterium Clostridium Histolyticum for the treatment of capsular contracture after silicone implants: ex-vivo study on human tissue. PLoS ONE. 2016;11(5):e0156428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Fischer S, Hirsch T, Diehm Y, Kiefer J, Bueno EM, Kueckelhaus M, et al. The collagenase of the bacterium Clostridium histolyticum for the treatment of capsular fibrosis after silicone implants. Plast Reconstr Surg. 2015;136(5):981–9.

    Article  CAS  PubMed  Google Scholar 

  11. Holzer LA, Holzer G. Injectable collagenase clostridium histolyticum for Dupuytren’s contracture. New Engl J Med. 2009;361(26):2579 (author reply 2579–2580).

    CAS  PubMed  Google Scholar 

  12. Tsambarlis P, Levine LA. Nonsurgical management of Peyronie’s disease. Nat Rev Urol. 2019;16(3):172–86.

    Article  PubMed  Google Scholar 

  13. Kovacheva M, Zepp M, Berger SM, Berger MR. Sustained conditional knockdown reveals intracellular bone sialoprotein as essential for breast cancer skeletal metastasis. Oncotarget. 2014;5(14):5510.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Benton G, Kleinman HK, George J, Arnaoutova I. Multiple uses of basement membrane-like matrix (BME/Matrigel) in vitro and in vivo with cancer cells. Int J Cancer. 2011;128(8):1751–7.

    Article  CAS  PubMed  Google Scholar 

  15. Wetterwald A, van der Pluijm G, Que I, Sijmons B, Buijs J, Karperien M, et al. Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. Am J Pathol. 2002;160(3):1143–53.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shi L, Jones WD, Jensen RV, Harris SC, Perkins RG, Goodsaid FM, et al. The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies. BMC Bioinform. 2008;9(Suppl 9):S10.

    Article  CAS  Google Scholar 

  17. Kittleson MM, Minhas KM, Irizarry RA, Ye SQ, Edness G, Breton E, et al. Gene expression in giant cell myocarditis: altered expression of immune response genes. Int J Cardiol. 2005;102(2):333–40.

    Article  PubMed  Google Scholar 

  18. Zhao B, Erwin A, Xue B. How many differentially expressed genes: a perspective from the comparison of genotypic and phenotypic distances. Genomics. 2018;110(1):67–73.

    Article  CAS  PubMed  Google Scholar 

  19. Gordon NH, Siminoff LA. Measuring quality of life of long-term breast cancer survivors: the long term quality of life–breast cancer (LTQOL-BC) scale. J Psychosoc Oncol. 2010;28(6):589–609.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Diehm YF, Jost Y, Kotsougiani-Fischer D, Haug V, Splinter M, Häring P, et al. The treatment of capsular contracture around breast implants induced by fractionated irradiation: the collagenase of the bacterium Clostridium Histolyticum as a novel therapeutic approach. Aesthetic Plast Surg. 2020;45:1273–81.

    Article  PubMed  Google Scholar 

  21. Syed F, Thomas AN, Singh S, Kolluru V, Emeigh Hart SG, Bayat A. In vitro study of novel collagenase (XIAFLEX®) on Dupuytren’s disease fibroblasts displays unique drug related properties. PLoS ONE. 2012;7(2):e31430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Balko JM, Cook RS, Vaught DB, Kuba MG, Miller TW, Bhola NE, et al. Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance. Nat Med. 2012;18(7):1052–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17(5):548–58.

    Article  CAS  PubMed  Google Scholar 

  24. Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature. 2004;432(7015):332–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98.

    Article  CAS  PubMed  Google Scholar 

  26. De Wever O, Demetter P, Mareel M, Bracke M. Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer. 2008;123(10):2229–38.

    Article  PubMed  CAS  Google Scholar 

  27. Miyazaki K, Togo S, Okamoto R, Idiris A, Kumagai H, Miyagi Y. Collective cancer cell invasion in contact with fibroblasts through integrin-α5β1/fibronectin interaction in collagen matrix. Cancer Sci. 2020;111:4381–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bachem MG, Schünemann M, Ramadani M, Siech M, Beger H, Buck A, et al. Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology. 2005;128(4):907–21.

    Article  CAS  PubMed  Google Scholar 

  29. Elenbaas B, Weinberg RA. Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res. 2001;264(1):169–84.

    Article  CAS  PubMed  Google Scholar 

  30. Bates RC, Mercurio AM. Tumor necrosis factor-α stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol Biol Cell. 2003;14(5):1790–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mao Y, Schwarzbauer JE. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol. 2005;24(6):389–99.

    Article  CAS  PubMed  Google Scholar 

  33. Wang JP, Hielscher A. Fibronectin: how its aberrant expression in tumors may improve therapeutic targeting. J Cancer. 2017;8(4):674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Attieh Y, Clark AG, Grass C, Richon S, Pocard M, Mariani P, et al. Cancer-associated fibroblasts lead tumor invasion through integrin-β3–dependent fibronectin assembly. J Cell Biol. 2017;216(11):3509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Erdogan B, Ao M, White LM, Means AL, Brewer BM, Yang L, et al. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. J Cell Biol. 2017;216(11):3799–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gopal S, Veracini L, Grall D, Butori C, Schaub S, Audebert S, et al. Fibronectin-guided migration of carcinoma collectives. Nat Commun. 2017;8(1):1–15.

    Article  CAS  Google Scholar 

  37. Lacroix M, Leclercq G. Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat. 2004;83(3):249–89.

    Article  CAS  PubMed  Google Scholar 

  38. Satya-Prakash KL, Pathak S, Hsu TC, Olivé M, Cailleau R. Cytogenetic analysis on eight human breast tumor cell lines: high frequencies of 1q, 11q and HeLa-like marker chromosomes. Cancer Genet Cytogenet. 1981;3(1):61–73.

    Article  CAS  PubMed  Google Scholar 

  39. Lee AV, Oesterreich S, Davidson NE. MCF-7 cells—changing the course of breast cancer research and care for 45 years. J Nat Cancer Inst. 2015;107(7):djv073

  40. Sussman BJ. Intervertebral discolysis with collagenase. J Natl Med Assoc. 1968;60(3):184–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sussman BJ. Experimental intervertebral discolysis. A critique of collagenase and chymopapain applications. Clin Orthop Relat Res. 1971; 80:181–190.

  42. Sussman BJ, Bromley JW, Gomez JC. Injection of collagenase in the treatment of herniated lumbar disk. Initial Clin Rep JAMA. 1981;245(7):730–2.

    CAS  Google Scholar 

  43. Sussman BJ, Mann M. Experimental intervertebral discolysis with collagenase. J Neurosurg. 1969;31(6):628–35.

    Article  CAS  PubMed  Google Scholar 

  44. Badalamente MA, Hurst LC. Enzyme injection as a nonoperative treatment for Dupuytren’s disease. Drug Deliv. 1996;3(1):35–40.

    Article  Google Scholar 

  45. Gelbard MK, Walsh R, Kaufman JJ. Collagenase for Peyronie’s disease experimental studies. Urol Res. 1982;10(3):135–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Methodology: YFD, KM, AMS, JT, MZ, MMG, and SF. Formal analysis and investigation: YFD, MRB, UK, and SF. Writing—original draft preparation: YFD, DKF, and SF. Writing—review and editing: all the authors. Supervision: MRB, UK, and SF.

Corresponding author

Correspondence to Sebastian Fischer.

Ethics declarations

Conflict of interest

The authors received funding support through an Educational Research Grant from Endo Pharmaceuticals (Malvern, USA). This grant was used to purchase general lab supply, both breast cancer cell lines, assays and immune-deficient mice. None of the authors received a salary for this study or has any financial interest.

Statement on the welfare of animals

All applicable national and institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diehm, Y.F., Marstaller, K., Seckler, AM. et al. The collagenase of the bacterium Clostridium histolyticum does not favor metastasis of breast cancer. Breast Cancer 29, 599–609 (2022). https://doi.org/10.1007/s12282-022-01337-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-022-01337-1

Keywords

Navigation