Skip to main content

Advertisement

Log in

Discriminating low-grade ductal carcinoma in situ (DCIS) from non-low-grade DCIS or DCIS upgraded to invasive carcinoma: effective texture features on ultrafast dynamic contrast-enhanced magnetic resonance imaging

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Purpose

To investigate effective model composed of features from ultrafast dynamic contrast-enhanced magnetic resonance imaging (UF-MRI) for distinguishing low- from non-low-grade ductal carcinoma in situ (DCIS) lesions or DCIS lesions upgraded to invasive carcinoma (upgrade DCIS lesions) among lesions diagnosed as DCIS on pre-operative biopsy.

Materials and methods

Eighty-six consecutive women with 86 DCIS lesions diagnosed by biopsy underwent UF-MRI including pre- and 18 post-contrast ultrafast scans (temporal resolution of 3 s/phase). The last phase of UF-MRI was used to perform 3D segmentation. The time point at 6 s after the aorta started to enhance was used to obtain subtracted images. From the 3D segmentation and subtracted images, enhancement, shape, and texture features were calculated and compared between low- and non-low-grade or upgrade DCIS lesions using univariate analysis. Feature selection by least absolute shrinkage and selection operator (LASSO) algorithm and k-fold cross-validation were performed to evaluate the diagnostic performance.

Results

Surgical specimens revealed 16 low-grade DCIS lesions, 37 non-low-grade lesions and 33 upgrade DCIS lesions. In univariate analysis, five shape and seven texture features were significantly different between low- and non-low-grade lesions or upgrade DCIS lesions, whereas enhancement features were not. The six features including surface/volume ratio, irregularity, diff variance, uniformity, sum average, and variance were selected using LASSO algorism and the mean area under the receiver operating characteristic curve for training and validation folds were 0.88 and 0.88, respectively.

Conclusion

The model with shape and texture features of UF-MRI could effectively distinguish low- from non-low-grade or upgrade DCIS lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DCIS:

Ductal carcinoma in situ

DCE-MRI:

Dynamic contrast-enhanced MRI

UF-MRI:

Ultrafast DCE-MRI

GLCM:

Gray level co-occurrence matrix

ROI:

Region of interest

IER:

Initial enhancement rate

SER:

Signal enhancement ratio

LASSO:

Least absolute shrinkage and selection operator

References

  1. Silverstein MJ. Ductal carcinoma in situ of the breast. Annu Rev Med. 2000;51:17–32.

    Article  CAS  PubMed  Google Scholar 

  2. Sanders ME, Schuyler PA, Simpson JF, et al. Continued observation of the natural history of low-grade ductal carcinoma in situ reaffirms proclivity for local recurrence even after more than 30 years of follow-up. Mod Pathol. 2015;28:662–9.

    Article  PubMed  Google Scholar 

  3. Weaver DL, Rosenberg RD, Barlow WE, et al. Pathologic findings from the Breast Cancer Surveillance Consortium: population-based outcomes in women undergoing biopsy after screening mammography. Cancer. 2006;106:732–42.

    Article  PubMed  Google Scholar 

  4. Cserni G, Sejben A. Grading ductal carcinoma in situ (DCIS) of the breast—what’s wrong with It? Pathol Oncol Res. 2020;26:665–71.

    Article  PubMed  Google Scholar 

  5. Oseni TO, Smith BL, Lehman CD, et al. Do eligibility criteria for ductal carcinoma in situ (DCIS) active surveillance trials identify patients at low risk for upgrade to invasive carcinoma? Ann Surg Oncol. 2020;27:4459–65.

    Article  PubMed  Google Scholar 

  6. The ICSN DCIS Working Group, Ponti A, Ronco G, et al (2019) Low-grade screen-detected ductal carcinoma in situ progresses more slowly than high-grade lesions: evidence from an international multi-centre study. Breast Cancer Res. Treat 177:761–765

  7. Maxwell AJ, Clements K, Hilton B, et al. Risk factors for the development of invasive cancer in unresected ductal carcinoma in situ. Eur J Surg Oncol. 2018;44:429–35.

    Article  PubMed  Google Scholar 

  8. Cserni G. Tumour histological grade may progress between primary and recurrent invasive mammary carcinoma. J Clin Pathol. 2002;55:293–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang S-Y, Shamliyan T, Virnig BA, et al. Tumor characteristics as predictors of local recurrence after treatment of ductal carcinoma in situ: a meta-analysis. Breast Cancer Res Treat. 2011;127:1–14.

    Article  CAS  PubMed  Google Scholar 

  10. Kuhl CK, Mielcareck P, Klaschik S, et al. Dynamic breast mr imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? 1. Radiology. 1999;211:101–10.

    Article  CAS  PubMed  Google Scholar 

  11. Kuhl CK, Schild HH. Dynamic image interpretation of MRI of the breast. J Magn Reson Imaging. 2000;12:965–74.

    Article  CAS  PubMed  Google Scholar 

  12. American College of Radiology (2013) Breast imaging reporting and data system (BI-RADS), 5th ed. Reston American College of Radiology

  13. Chan S, Chen J-H, Agrawal G, et al. Characterization of pure ductal carcinoma in situ on dynamic contrast-enhanced MR Imaging: do nonhigh grade and high grade show different imaging features? J Oncol. 2010;2010:431341.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jansen SA, Newstead GM, Abe H, et al. Pure ductal carcinoma in situ: kinetic and morphologic MR characteristics compared with mammographic appearance and nuclear grade1. Radiology. 2007;245:684–91.

    Article  PubMed  Google Scholar 

  15. Greenwood HI, Wilmes LJ, Kelil T, et al. Role of breast MRI in the evaluation and detection of DCIS: opportunities and challenges. J Magn Reson Imaging. 2020;52:697–709.

    Article  PubMed  Google Scholar 

  16. Mann RM, Mus RD, van Zelst J, et al. A novel approach to contrast-enhanced breast magnetic resonance imaging for screening: high-resolution ultrafast dynamic imaging. Invest Radiol. 2014;49:579–85.

    Article  PubMed  Google Scholar 

  17. Pineda FD, Medved M, Wang S, et al. Ultrafast bilateral DCE-MRI of the breast with conventional fourier sampling: preliminary evaluation of semi-quantitative analysis. Acad Radiol. 2016;23:1137–44.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mori N, Abe H, Mugikura S, et al. Ultrafast dynamic CONTRAST-ENHANCED BREAST MRI: kinetic curve assessment using empirical mathematical model validated with histological microvessel density. Acad Radiol. 2019;26:e141–9.

    Article  PubMed  Google Scholar 

  19. Onishi N, Sadinski M, Gibbs P, et al. Differentiation between subcentimeter carcinomas and benign lesions using kinetic parameters derived from ultrafast dynamic contrast-enhanced breast MRI. Eur Radiol. 2020;30:756–66.

    Article  PubMed  Google Scholar 

  20. Abe H, Mori N, Tsuchiya K, et al. Kinetic analysis of benign and malignant breast lesions with ultrafast dynamic contrast-enhanced MRI: comparison with standard kinetic assessment. Am J Roentgenol. 2016;207:1159–66.

    Article  Google Scholar 

  21. Mori N, Pineda FD, Tsuchiya K, et al. Fast temporal resolution dynamic contrast-enhanced MRI: histogram analysis versus visual analysis for differentiating benign and malignant breast lesions. Am J Roentgenol. 2018;211:933–9.

    Article  Google Scholar 

  22. Ohashi A, Kataoka M, Kanao S, et al. Diagnostic performance of maximum slope: a kinetic parameter obtained from ultrafast dynamic contrast-enhanced magnetic resonance imaging of the breast using k-space weighted image contrast (KWIC). Eur J Radiol. 2019;118:285–92.

    Article  PubMed  Google Scholar 

  23. Facius M, Renz DM, Neubauer H, et al. Characteristics of ductal carcinoma in situ in magnetic resonance imaging. Clin Imaging. 2007;31:394–400.

    Article  PubMed  Google Scholar 

  24. Esserman LJ. Magnetic resonance imaging captures the biology of ductal carcinoma in situ. J Clin Oncol. 2006;24:4603–10.

    Article  PubMed  Google Scholar 

  25. Yoon H-J, Kim Y, Kim BS. Intratumoral metabolic heterogeneity predicts invasive components in breast ductal carcinoma in situ. Eur Radiol. 2015;25:3648–58.

    Article  PubMed  Google Scholar 

  26. Ueno Y, Forghani B, Forghani R, et al. Endometrial carcinoma: MR imaging–based texture model for preoperative risk stratification—a preliminary analysis. Radiology. 2017;284:748–57.

    Article  PubMed  Google Scholar 

  27. Yamada I, Miyasaka N, Kobayashi D, et al. Endometrial carcinoma: texture analysis of apparent diffusion coefficient maps and its correlation with histopathologic findings and prognosis. Radiol Imaging Cancer. 2019;1:e190054. https://doi.org/10.1148/rycan.2019190054.

    Article  PubMed  PubMed Central  Google Scholar 

  28. RM Haralick, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern (6):610–21

  29. Gibbs P, Turnbull LW. Textural analysis of contrast-enhanced MR images of the breast. Magn Reson Med. 2003;50:92–8.

    Article  PubMed  Google Scholar 

  30. Chen W, Giger ML, Li H, et al. Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn Reson Med. 2007;58:562–71.

    Article  PubMed  Google Scholar 

  31. Woods BJ, Clymer BD, Kurc T, et al. Malignant-lesion segmentation using 4D co-occurrence texture analysis applied to dynamic contrast-enhanced magnetic resonance breast image data. J Magn Reson Imaging. 2007;25:495–501.

    Article  PubMed  Google Scholar 

  32. Eun NL, Kang D, Son EJ, et al. Texture analysis with 3.0-T MRI for association of response to neoadjuvant chemotherapy in breast cancer. Radiology. 2020;294:31–41.

    Article  PubMed  Google Scholar 

  33. Waugh SA, Purdie CA, Jordan LB, et al. Magnetic resonance imaging texture analysis classification of primary breast cancer. Eur Radiol. 2016;26:322–30.

    Article  CAS  PubMed  Google Scholar 

  34. Wu M, Krishna S, Thornhill RE, et al. Transition zone prostate cancer: logistic regression and machine-learning models of quantitative ADC, shape and texture features are highly accurate for diagnosis: Machine-Learning Diagnosis of PZ PCa. J Magn Reson Imaging. 2019;50:940–50.

    Article  PubMed  Google Scholar 

  35. WHO Classification of Tumours, 5th ed. Breast Tumours WORLD HEALTH ORGANIZATION, 2019

  36. Chen W, Giger ML, Bick U. A fuzzy C-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR Images1. Acad Radiol. 2006;13:63–72.

    Article  PubMed  Google Scholar 

  37. Alhamzawi R, Ali HTM. The Bayesian adaptive lasso regression. Math Biosci. 2018;303:75–82.

    Article  PubMed  Google Scholar 

  38. Zheng Y, Li J, Liu S, et al. MRI-Based radiomics nomogram for differentiation of benign and malignant lesions of the parotid gland. Eur Radiol. 2020. https://doi.org/10.1007/s00330-020-07483-4 ((online ahead of print)).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yan P-F, Yan L, Hu T-T, et al. The potential value of preoperative MRI texture and shape analysis in grading meningiomas: a preliminary investigation. Transl Oncol. 2017;10:570–7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hamerla G, Meyer H-J, Schob S, et al. Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: a multicenter radiomics study. Magn Reson Imaging. 2019;63:244–9.

    Article  PubMed  Google Scholar 

  41. Lehotska V, Rauova K, Vanovcanova L. Multiparametric MRI analysis of morphologico-functional features of DCIS—correlation with the grade of nuclear atypia. Neoplasma. 2018;65:389–97.

    Article  CAS  PubMed  Google Scholar 

  42. Hajaj M, Karim A, Pascaline S, et al. Impact of MRI on high grade Ductal Carcinoma Insitu (HG DCIS) management, are we using the full scope of MRI? Eur J Radiol. 2017;95:271–7.

    Article  PubMed  Google Scholar 

  43. Lee KH, Han JW, Kim EY, et al. Predictive factors for the presence of invasive components in patients diagnosed with ductal carcinoma in situ based on preoperative biopsy. BMC Cancer. 2019;19:1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Iima M, Bihan DL, Okumura R, et al. Apparent diffusion coefficient as an MR imaging biomarker of low-risk ductal carcinoma in situ: a pilot study. Radiology. 2011;260:364–72.

    Article  PubMed  Google Scholar 

  45. Mori N, Ota H, Mugikura S, et al. Detection of invasive components in cases of breast ductal carcinoma in situ on biopsy by using apparent diffusion coefficient MR parameters. Eur Radiol. 2013;23:2705–12.

    Article  PubMed  Google Scholar 

  46. Burstein HJ, Polyak K, Wong JS, et al. Ductal carcinoma in situ of the breast. N Engl J Med. 2004;350:1430–41.

    Article  CAS  PubMed  Google Scholar 

  47. Mannu GS, Groen EJ, Wang Z, et al. Reliability of preoperative breast biopsies showing ductal carcinoma in situ and implications for non-operative treatment: a cohort study. Breast Cancer Res Treat. 2019;178:409–18.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mossa-Basha M, Fundaro GM, Shah BA, et al (2020) Ductal carcinoma in situ of the breast: MR imaging findings with histopathologic correlation. Radiographics 30:1673–1687.

  49. Neubauer H. High grade and non-high grade ductal carcinoma in situ on dynamic MR mammography: characteristic findings for signal increase and morphological pattern of enhancement. Br J Radiol. 2003;76:3–12.

    Article  CAS  PubMed  Google Scholar 

  50. Rosen EL, Smith-Foley SA, DeMartini WB, et al. BI-RADS MRI enhancement characteristics of ductal carcinoma in situ. Breast J. 2007;13:545–50.

    Article  PubMed  Google Scholar 

  51. Orel SG, Mendonca M, Sullivan D. MR imaging of ductal carcinoma in situ. Radiology. 1997;202:413–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Segal foundation grant and JSPS KAKENHI (18K07742). The authors thank Robert Tomek of Qlarity Imaging for his kind support. The authors thank Naoko Hirose, Kanako Shibui, and Kyuhei Takahashi in Tohoku University for their kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoko Mori.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Shape features

Volume is the volume of the lesion in mm3.

Surface area is the surface area of the lesion in mm2.

$$\mathrm{Effective Radius},\mathrm{ R}eef=\sqrt[3]{(3\times \mathrm{Volume})/4\uppi },$$
(7)
$$\mathrm{Sphericity }=\frac{\mathrm{Volume of Lesion Inside Sphere of radius }{\mathrm{R}}_{eef}}{\mathrm{Total Lesion Volume}},$$
(8)
$$\text{Irregularity}=1-\frac{{4{\pi R}}_{eef}^{2}}{\text{Surface Area}}.$$
(9)

Texture features

The following mathematical expressions are used to calculate the GLCM-based texture

$${p}_{x}\left(i\right)=\sum_{j=1}^{G}p\left(i.j\right),$$
(10)
$${p}_{y}\left(j\right)=\sum_{i=1}^{G}p\left(i.j\right),$$
(11)
$${p}_{x+y}\left(k\right)=\sum_{i=1}^{G}\sum_{j=1}^{G}p\left(i.j\right),$$
(12)
$$k=i+j=\mathrm{2,3},\cdots 2G,$$
(13)
$${p}_{x-y}\left(k\right)=\sum_{i=1}^{G}\sum_{j=1}^{G}p\left(i.j\right),$$
(14)
$$k=\left|i\right.-\left.j\right|=\mathrm{0,1},2,\cdots G-1,$$
(15)

GLCM textures are calculated using the following equations:

$$\mathrm{Contrast}=\sum_{k=1}^{G-1}{k}^{2}{p}_{x-y}\left(k\right),$$
(16)
$$\mathrm{Correlation}=\frac{\sum_{i=1}^{G}\sum_{j=1}^{G}\left(i\bullet J\right)p\left(i,j\right)-{\mu }_{x}{\mu }_{y}}{{\sigma }_{x}{\sigma }_{y}},$$
(17)
$$\mathrm{Diff Entropy}=-\sum_{k=0}^{G-1}{p}_{x-y}\left(k\right)\mathrm{log}\left({p}_{x-y}\left(\mathrm{k}\right)\right),$$
(18)
$$\mathrm{Diff Variance}=\sum_{k=0}^{G-1}(k-{\mu }_{x-y}{)}^{2}{p}_{x-y}(k),$$
(19)

where \({\mu }_{x-y}\) is the mean of \({p}_{x-y}(k)\)

$$\mathrm{Uniformity}=\sum_{i=1}^{G}{\sum_{j=1}^{G}p(i,j)}^{2},$$
(20)
$$\mathrm{Entropy}={f}_{9}=-\sum_{i=1}^{G}\sum_{j=1}^{G}p\left(i,J\right)\mathrm{log}\left(p\left(i,j\right)\right),$$
(21)
$$\mathrm{Homogeneity}=\sum_{i=1}^{G}\sum_{j=1}^{G}\frac{1}{1+{\left(i-j\right)}^{2}}p\left(i,j\right),$$
(22)
$$\mathrm{Sum Average}={f}_{6}=\sum_{k=2}^{2G}{kp}_{x+y}(k),$$
(23)
$$\mathrm{Sum Entropy}=-\sum_{k=2}^{2G}{p}_{x+y}\left(k\right)\mathrm{log}\left({p}_{x+y}\left(k\right)\right),$$
(24)
$$\mathrm{Sum Variance}=\sum_{k-2}^{G}(k-{f}_{6}{)}^{2}{p}_{x+y}\left(k\right),$$
(25)
$$\mathrm{Variance}=\sum_{i=1}^{G}(i-{\mu }_{x}{)}^{2}{p}_{x}(i),$$
(26)
$$\mathrm{Margin Sharpness}=\frac{{\widehat{G}}_{xyz}^{*}}{{\widehat{B}}^{*}\bullet {\Delta }_{xyz}},$$
(27)

where

$${\widehat{G}}_{xyz}^{*}=\sum \left\{{g}_{xyz}^{*}|{g}_{xyz}^{*}\in {g}_{xyz}^{*}(i,j,k)\right\}/{N}^{*},$$
(28)
$${\widehat{B}}^{*}=\sum \left\{b|b\in {B}^{*}(i,j,k)\right\}/{N}^{*},$$
(29)

where N* is the number of voxels in the border, B*, and Δxyz is the isotropic voxel size.

$$\mathrm{Variance of Margin Sharpness}=\frac{\sqrt{{{\widehat{{G}^{2}}}^{*}}_{xyz}-{\widehat{G}}_{xyz}^{*}}}{{\widehat{B}}^{*}\bullet {\Delta }_{xyz}},$$
(30)

Where

$${{\widehat{{ G}^{2}}}^{*}}_{xyz}=\frac{\sum \left\{{{g}_{xyz}^{*}}^{2}|{g}_{xyZ}^{*}\in {G}_{xyz}^{*}(i,j,k)\right\}}{{N}^{*}},$$
(31)
$$v\mathrm{RGH}=\sqrt{{\widehat{{RGH}^{2}}-\widehat{RGH}}^{2},}$$
(32)

were

$$\widehat{{RGH}^{2}}=\sum \left\{{rgh}^{2}|rgh\in RGH\right\}/(N\bullet {N}_{b}),$$
(33)
$$\widehat{RGH}=\sum \left\{rgh|rgh\in RGH\right\}/(N\bullet {N}_{b}).$$
(34)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, N., Abe, H., Mugikura, S. et al. Discriminating low-grade ductal carcinoma in situ (DCIS) from non-low-grade DCIS or DCIS upgraded to invasive carcinoma: effective texture features on ultrafast dynamic contrast-enhanced magnetic resonance imaging. Breast Cancer 28, 1141–1153 (2021). https://doi.org/10.1007/s12282-021-01257-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-021-01257-6

Keywords

Navigation