Skip to main content

Advertisement

Log in

Understanding breast cancer heterogeneity through non-genetic heterogeneity

  • Review Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Intricacy in treatment and diagnosis of breast cancer has been an obstacle due to genotype and phenotype heterogeneity. Understanding of non-genetic heterogeneity mechanisms along with considering role of genetic heterogeneity may fill the gaps in landscape painting of heterogeneity. The main factors contribute to non-genetic heterogeneity including: transcriptional pulsing/bursting or discontinuous transcriptions, stochastic partitioning of components at cell division and various signal transduction from tumor ecosystem. Throughout this review, we desired to provide a conceptual framework focused on non-genetic heterogeneity, which has been intended to offer insight into prediction, diagnosis and treatment of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source of the heterogeneity. Transcriptional pulsing/bursting or discontinuous transcriptions, stochastic partitioning of components at cell division belong to intrinsic sources of non-genetic phenotypic and functional heterogeneity. Various signal transduction from TME in line with variation in TME component and topography cause extrinsic source of non-genetic heterogeneity in cancer

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CAFs:

Cancer-associated fibroblasts

TADs:

Topologically associating domains

CTCF:

CCCTC-binding factor

lncRNAs:

Long noncoding RNA

DMGs:

Methylated DNA regions

MDSCs:

Myeloid-derived suppressor cells

TAMs:

Tumor-associated macrophages

VECs:

Vascular endothelial cells

Program death ligand 1:

Expressing PD-L1

EMT/MET:

Epithelial to mesenchymal/mesenchymal to epithelial transition

CSCs:

Cancer stem-like cells

TME:

Tumor microenvironment

ICD:

Immunogenic cell death

HMGB1:

High-mobility group box 1 protein

HIF1α:

Hypoxia inducible factor 1 alpha

CTCs:

Circulating tumor cells

ctDNA:

Circulating tumor DNA

EVs:

Extracellular vesicles

MCT1:

Monocarboxylate transporter 1

BCSCs:

Breast cancer CSCs

CK14:

Cytokeratin-14

PDGF:

Platelet-derived growth factor

NSCCs:

Non-stem cancer cells

IHC:

Immunohistochemistry

IF:

Immunofluorescence

MERFISH:

Multiplexed error robust FISH

WGA:

Genome analysis

NGS:

Next-generation sequence

FACS:

Fluorescence-activated cell sorting

WTS:

Whole transcriptome sequencing

CyTOF:

Cytometry time of flight

MALDI:

Matrix-assisted laser desorption/ionization

References

  1. Lee ATJ, Chew W, Wilding CP, Guljar N, Smith MJ, Strauss DC, et al. The adequacy of tissue microarrays in the assessment of inter- and intra-tumoural heterogeneity of infiltrating lymphocyte burden in leiomyosarcoma. Sci Rep. 2019;9:1–12.

    Google Scholar 

  2. Cornwell JA, Hallett RM, Der MSA, Motazedian A, Schroeder T. Quantifying intrinsic and extrinsic control of single-cell fates in cancer and stem/progenitor cell pedigrees with competing risks analysis. Sci Rep. 2016. https://doi.org/10.1038/srep27100.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kærn M, Elston TC, Blake WJ, Collins JJ. Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet. 2005;6:451–64.

    Article  PubMed  Google Scholar 

  4. Thomas P. Intrinsic and extrinsic noise of gene expression in lineage trees. Sci Rep. 2019. https://doi.org/10.1038/s41598-018-35927-x.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kwon T, Kwon O, Cha H, Sung BJ. Stochastic and heterogeneous cancer cell migration: experiment and theory. Sci Rep. 2019;9:1–13.

    Article  Google Scholar 

  6. Voss TC, Hager GL. Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat Rev Genet. 2013. https://doi.org/10.1038/nrg3623.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lahav G, Rosenfeld N, Sigal A, Geva-zatorsky N, Levine AJ, Elowitz MB, et al. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nature. 2004;36(2):147–50.

    CAS  Google Scholar 

  8. Sh C, Lo A. p53 dynamics in single cells are. 2020;1–14.

  9. Chubb JR. Gene regulation: stable noise. Curr Biol. 2016;26(2):R61–4. https://doi.org/10.1016/j.cub.2015.12.002.

    Article  CAS  PubMed  Google Scholar 

  10. Huang S. Non-genetic heterogeneity of cells in development: more than just noise. Development. 2009;3862:3853–62.

    Article  Google Scholar 

  11. Huh D, Paulsson J. Non-genetic heterogeneity from stochastic partitioning at cell division. Nat Genet. 2011;43(2):95.

    Article  CAS  PubMed  Google Scholar 

  12. Mulder N, Martin DP. Metabolic gene alterations impact the clinical aggressiveness and drug responses of 32 human cancers. Commun Biol. 2019. https://doi.org/10.1038/s42003-019-0666-1.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tonn MK, Thomas P, Oyarzún DA. Stochastic modelling reveals mechanisms of metabolic heterogeneity. Commun Biol. 2019. https://doi.org/10.1038/s42003-019-0347-0.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wilkinson M, Darmanis S, Pisco AO, Huber G. Persistent features of intermittent transcription. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-60094-3.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sahai E, Astsaturov I, Cukierman E, Denardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020. https://doi.org/10.1038/s41568-019-0238-1.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Krivega I, Dean A. CTCF fences make good neighbours. Nat Cell Biol. 2017;19(8):883–5. https://doi.org/10.1038/ncb3584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ghavi-Helm Y, Jankowski A, Meiers S, Viales RR, Korbel JO, Furlong EEM. Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression. Nat Genet. 2019. https://doi.org/10.1038/s41588-019-0462-3.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li L, Lyu X, Qin ZS, Corces VG. Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing. Mol Cell. 2015;28:1–16.

    Google Scholar 

  19. Gong Y, Lazaris C, Sakellaropoulos T, Lozano A, Kambadur P, Ntziachristos P, et al. Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-03017-1.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bell CC. Principles and mechanisms of non-genetic resistance in cancer. Br J Cancer. 2019. https://doi.org/10.1038/s41416-019-0648-6.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gelato KA, Shaikhibrahim Z, Ocker M, Haendler B. Targeting epigenetic regulators for cancer therapy: modulation of bromodomain proteins, methyltransferases, demethylases, and microRNAs. Expert Opin Ther Targets. 2016;20:783.

    Article  CAS  PubMed  Google Scholar 

  22. Wong EM, Southey MC, Terry MB. Integrating DNA methylation measures to improve clinical risk assessment: are we there yet ? The case of BRCA1 methylation marks to improve clinical risk assessment of breast cancer. Br J Cancer. 2020. https://doi.org/10.1038/s41416-019-0720-2.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, Mcdonald OG, et al. Increased methylation variation in epigenetic domains across cancer types. Nat Genet. 2011;43(8):768–75. https://doi.org/10.1038/ng.865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. San R, Sally AM. Integrative network analysis of differentially methylated and expressed genes for biomarker identification in leukemia. Sci Rep. 2020;10:1–16.

    Google Scholar 

  25. Moufarrij S, Srivastava A, Gomez S, Hadley M, Palmer E, Austin PT, et al. Combining DNMT and HDAC6 inhibitors increases anti-tumor immune signaling and decreases tumor burden in ovarian cancer. Sci Rep. 2020;10:1–12.

    Article  Google Scholar 

  26. Barrett RDH. Epigenetics in natural animal populations. J Evol Biol. 2017;30:1612–32.

    Article  PubMed  Google Scholar 

  27. Burkhart RA, Laheru DA, Herman JM, Timothy M. Multidisciplinary management and the future of treatment in cholangiocarcinoma. Expert Opin Orphan Drugs. 2016;4:255.

    Article  Google Scholar 

  28. Wang G, Wang Q, Liang N, Xue H, Yang T, Chen X, et al. Oncogenic driver genes and tumor microenvironment determine the type of liver cancer. Cell Death Dis. 2020. https://doi.org/10.1038/s41419-020-2509-x.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Po A, Giuliani A, Masiello MG, Cucina A, Chiacchiarini M, Tafani M, et al. Phenotypic transitions enacted by simulated microgravity do not alter coherence in gene transcription profile. npj Microgravity. 2019. https://doi.org/10.1038/s41526-019-0088-x.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.

    Article  CAS  PubMed  Google Scholar 

  31. Liu S, Qin T, Liu Z, Wang J, Jia Y, Feng Y, et al. anlotinib alters tumor immune microenvironment by downregulating PD-L1 expression on vascular endothelial cells. Cell Death Dis. 2020. https://doi.org/10.1038/s41419-020-2511-3.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Thibaut R, Bost P, Milo I, Cazaux M, Lemaître F, Garcia Z, et al. Bystander IFN-γ activity promotes widespread and sustained cytokine signaling altering the tumor microenvironment. Nat Cancer. 2020. https://doi.org/10.1038/s43018-020-0038-2.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kim MH, Kim J, Lee JM, Choi JW, Jung D, Cho H, et al. Molecular subtypes of oropharyngeal cancer show distinct immune microenvironment related with immune checkpoint blockade response. Br J Cancer. 2020. https://doi.org/10.1038/s41416-020-0796-8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Targeted Ther. 2020. https://doi.org/10.1038/s41392-020-0110-5.

    Article  Google Scholar 

  35. Vickers NJ. Animal communication : When I’m Calling You, Will You Answer Too? Curr Biol. 2017;27(14):R713–5. https://doi.org/10.1016/j.cub.2017.05.064.

    Article  CAS  PubMed  Google Scholar 

  36. Wilcken N, Zdenkowski N, White M, Snyder R, Pittman K, Mainwaring P, et al. Systemic treatment of HER2-positive metastatic breast cancer: a systematic review. Asia Pac J Clin Oncol. 2014;10:1–14.

    Article  PubMed  Google Scholar 

  37. Ohlsson R, Kanduri C, Whitehead J, Pfeifer S, Lobanenkov V, Feinberg AP. Epigenetic variability and the evolution of human cancer. Adv Cancer Res. 2003;88:145.

    Article  CAS  PubMed  Google Scholar 

  38. Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet. 2006;7:21–33.

    Article  CAS  PubMed  Google Scholar 

  39. Feinberg AP, Koldobskiy MA, Göndör A. Disease mechanisms: epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet. 2016. https://doi.org/10.1038/nrg.2016.13.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang Y. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Front Med. 2018;12(4):361–73.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Papadaki MA, Stoupis G, Theodoropoulos PA, Mavroudis D. Circulating tumor cells with stemness and epithelial-to-mesenchymal transition features are chemoresistant and predictive of poor outcome in metastatic breast cancer. Mol Cancer. 2019;18:437–48.

    Article  CAS  Google Scholar 

  42. Bhang HC, Ruddy DA, Radhakrishna VK, Caushi JX, Zhao R, Hims MM, et al. Articles studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat Med. 2015;21(5):440.

    Article  CAS  PubMed  Google Scholar 

  43. Frankenstein Z, Basanta D, Franco OE, Gao Y, Javier RA, Strand DW, et al. Stromal reactivity differentially drives tumour cell evolution and prostate cancer progression. Nat Ecol Evol. 2020. https://doi.org/10.1038/s41559-020-1157-y.

    Article  PubMed  Google Scholar 

  44. Junttila MR, De SFJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501:346.

    Article  CAS  PubMed  Google Scholar 

  45. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev. 2016;16(9):582–98. https://doi.org/10.1038/nrc.2016.73.

    Article  CAS  Google Scholar 

  46. Cairns J, Ung CY, Lummertz E, Zhang C, Correia C, Weinshilboum R, et al. A network-based phenotype mapping approach to identify genes that modulate drug response phenotypes. Sci Rep. 2016;6:1–13.

    Article  Google Scholar 

  47. Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I, et al. Treatment-induced damage to the tumor micro-environment promotes prostate cancer therapy resistance through WNT16B. Nat Med. 2012;18(9):1359–68. https://doi.org/10.1038/nm.2890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takeshima H, Ushijima T. Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. npj Precis Oncol. 2019. https://doi.org/10.1038/s41698-019-0079-0.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1 β—dependent adaptive immunity against tumors. Nat Med. 2009;15(10):1170–9.

    Article  CAS  PubMed  Google Scholar 

  50. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Ther. 2013;31:51.

    CAS  Google Scholar 

  51. Ye Y, Hu Q, Chen H, Liang K, Yuan Y, Xiang Y, et al. Characterization of hypoxia-associated molecular features to aid hypoxia-targeted therapy. Nat Metab. 2019. https://doi.org/10.1038/s42255-019-0045-8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bhandari V, Hoey C, Liu LY, Lalonde E, Ray J, Livingstone J, et al. Molecular landmarks of tumor hypoxia across cancer types. Nat Genet. 2019. https://doi.org/10.1038/s41588-018-0318-2.

    Article  PubMed  Google Scholar 

  53. Dai X, Xiang L, Li T, Bai Z. Cancer hallmarks, biomarkers and breast cancer molecular subtypes. J Cancer. 2016;7(10):1281–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Geng H, Xue C, Mendonca J, Sun X, Liu Q, Reardon PN, et al. Interplay between hypoxia and androgen controls a metabolic switch conferring resistance to androgen/AR-targeted therapy. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-07411-7.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Raja R, Kale S, Thorat D, Soundararajan G, Lohite K, Mane A, et al. Hypoxia-driven osteopontin contributes to breast tumor growth through modulation of HIF1 a-mediated VEGF-dependent angiogenesis. Oncogene. 2014;33:2053–64.

    Article  CAS  PubMed  Google Scholar 

  56. Kim H, Lin Q, Yun Z. BRCA1 regulates the cancer stem cell fate of breast cancer cells in the context of hypoxia and histone deacetylase inhibitors. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-46210-y.

    Article  Google Scholar 

  57. Barrak NH, Khajah MA, Luqmani YA. Hypoxic environment may enhance migration/penetration of endocrine resistant MCF7-derived breast cancer cells through monolayers of other non-invasive cancer cells in vitro. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-58055-x.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Inference B, Farlik M, Sheffield NC, Klughammer J, Bock C, Klughammer J. Single-cell DNA methylome sequencing and resource single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep. 2015;10:1386–97.

    Article  Google Scholar 

  59. Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN, et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci. 2012;109(8):2784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Widmer DS, Hoek KS, Cheng PF, Eichhoff OM, Biedermann T, Raaijmakers MIG, et al. Hypoxia contributes to melanoma heterogeneity by triggering HIF1 a-dependent phenotype switching. J Investig Dermatol. 2013;133:2436.

    Article  CAS  PubMed  Google Scholar 

  61. Thalgott M, Rack B, Maurer T, Souvatzoglou M, Eiber M, Kreß V, et al. Detection of circulating tumor cells in different stages of prostate cancer. J Cancer Res Clin Oncol. 2013;139:755–63.

    Article  PubMed  Google Scholar 

  62. Yu M, Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, et al. 2013;580.

  63. Follain G, Herrmann D, Hyenne V, Warren SC, Timpson P, Goetz JG. Fluids and their mechanics in tumour transit: shaping metastasis. Nat Rev. 2020;20:107.

    Article  CAS  Google Scholar 

  64. Headley MB, Bins A, Nip A, Edward W, Looney MR, Gerard A, et al. Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature. 2016. https://doi.org/10.1038/nature16985.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Azevedo AS, Pantel K, Goetz JG, Metivet T, Hille C, Chabannes V, et al. Hemodynamic forces tune the arrest, adhesion, and extravasation of circulating tumor cells. Dev Cells. 2018;45:33–52.

    Article  Google Scholar 

  66. Tasdogan A, Faubert B, Ramesh V, Ubellacker JM, Shen B, Solmonson A, et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature. 2019. https://doi.org/10.1038/s41586-019-1847-2.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gkountela S, Castro-giner F, Szczerba BM, Rochlitz C, Weber WP, Gkountela S, et al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding article circulating tumor cell clustering shapes DNA methylation. Cell. 2019;176(1–2):98–112. https://doi.org/10.1016/j.cell.2018.11.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ignatiadis M, Lee M, Jeffrey SS. Circulating tumor cells and circulating tumor DNA: challenges and opportunities on the path to clinical utility. Clin Cancer Res. 2015;21(21):4786–801.

    Article  CAS  PubMed  Google Scholar 

  69. Tricarico C, Clancy J, Souza-schorey CD. Biology and biogenesis of shed microvesicles. Small GTPases. 2017;8(4):220–32. https://doi.org/10.1080/21541248.2016.1215283.

    Article  CAS  PubMed  Google Scholar 

  70. Keklikoglou I, Cianciaruso C, Güç E, Squadrito ML, Spring LM, Tazzyman S, et al. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol. 2019;21(2):190–202.

    Article  CAS  PubMed  Google Scholar 

  71. Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem. 2016;81(16):6813–22.

    Article  Google Scholar 

  72. Eun K, Ham SW, Kim H. Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. BMB Rep. 2017;50(3):117–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen W, Dong J, Haiech J, Kilhoffer M, Zeniou M. Cancer stem cell quiescence and plasticity as major challenges in cancer therapy. Stem Cells Int. 2016.

  74. Santisteban M, Reiman JM, Asiedu MK, Behrens MD, Nassar A, Kalli KR, et al. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res. 2009;69(7):2887–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sharma A, Merritt E, Hu X, Malhotra J, Riedlinger GM, De S, et al. Non-genetic intra-tumor heterogeneity is a major predictor of phenotypic heterogeneity and ongoing evolutionary dynamics in lung tumors. Cell Rep. 2019;29(8):2164–74. https://doi.org/10.1016/j.celrep.2019.10.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. He P, Qiu K, Jia Y. Modeling of mesenchymal hybrid epithelial state and phenotypic transitions in EMT and MET processes of cancer cells. Sci Rep. 2018;8:1–13.

    Article  Google Scholar 

  77. Mani SA, Guo W, Liao M, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cells. 2008;133:704–15.

    Article  CAS  Google Scholar 

  78. Sun L, Burnett J, Gasparyan M, Xu F, Jiang H, Lin C, et al. Novel cancer stem cell targets during epithelial to mesenchymal transition in PTEN-deficient trastuzumab-resistant breast cancer. Oncotarget. 2016;7(32):51408.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Almendro V, Marusyk A, Polyak K. Cellular heterogeneity and molecular evolution in cancer. Annu Rev Pathol Mech Dis. 2013;8:277.

    Article  CAS  Google Scholar 

  80. Qiu K, Gao K, Yang L, Zhang Z, Wang R. OPEN A kinetic model of multiple phenotypic states for breast cancer cells. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-10321-1.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C. Theory stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell. 2011;146(4):633–44. https://doi.org/10.1016/j.cell.2011.07.026.

    Article  CAS  PubMed  Google Scholar 

  82. Yang C, Cao M, Liu Y, He Y, Du Y, Zhang G, et al. Inducible formation of leader cells driven by CD44 switching gives rise to collective invasion and metastases in luminal breast carcinomas. Oncogene. 2019. https://doi.org/10.1038/s41388-019-0899-y.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cheung KJ, Gabrielson E, Werb Z, Ewald AJ. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell. 2013;155(7):1639–51. https://doi.org/10.1016/j.cell.2013.11.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jordan NV, Bardia A, Wittner BS, Benes C, Ligorio M, Zheng Y, et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature. 2016. https://doi.org/10.1038/nature19328.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Roswall P, Bocci M, Bartoschek M, Li H, Kristiansen G, Jansson S, et al. Microenvironmental control of breast cancer subtype elicited through paracrine platelet-derived growth factor-CC signaling. Nat Med. 2018. https://doi.org/10.1038/nm.4494.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Iliopoulos D, Hirsch HA, Wang G, Struhl K. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci. 2011;108(4):1397–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Aparicio S, Caldas C. The implications of clonal genome evolution for cancer medicine. N Engl J Med. 2013;368:842.

    Article  CAS  PubMed  Google Scholar 

  88. Bassez A, Decaluwé H, Pircher A, Van Den EK. Tumor microenvironment. Nat Med. 2018. https://doi.org/10.1038/s41591-018-0096-5.

    Article  PubMed  Google Scholar 

  89. Learned L, Challenges E. Perspective single-cell RNA sequencing in cancer: lessons learned and emerging challenges. Mol Cell. 2019;75:7–12.

    Article  Google Scholar 

  90. Martelotto LG, Ng CKY, Piscuoglio S, Weigelt B, Reis-filho JS. Breast cancer intra-tumor heterogeneity. Breast Cancer Res. 2014;16:1.

    Article  Google Scholar 

  91. Itzkovitz S, Van OA. Validating transcripts with probes and imaging technology. Nat Methods. 2011;8(4):S12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Massard C, Oulhen M, Le MS, Foulon S, Abou-lovergne A, Billiot F. Phenotypic and genetic heterogeneity of tumor tissue and circulating tumor cells in patients with metastatic castration-resistant prostate cancer: a report from the PETRUS prospective study. Oncotarget. 2016;7(34):55069.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, Wu X, Vo HT, Ma XJ, Luo Y. RNAscope: a novel in situ RNA analysis platform for formalin fixed, paraffin-embedded tissues. J Mol Diagn. 2012;14(1):22–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Park SY, Michor F, Polyak K, Park SY, Gönen M, Kim HJ, et al. Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J Clin Investig. 2010;120(2):636–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science. 2015;1363(2014):1360–3.

    Google Scholar 

  96. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, Mcindoo J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472(7341):90–4. https://doi.org/10.1038/nature09807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Powell AA, Talasaz AH, Zhang H, Coram MA, Reddy A, Deng G, Telli ML, Advani RH, Carlson RW, Mollick JA, Sheth S. Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PloS One. 2012;7(5):e33788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sidoli S, Kori Y, Lopes M, Yuan Z, Kim HJ, Kulej K, et al. One minute analysis of 200 histone posttranslational modifications by direct injection mass spectrometry. Genome Res. 2019;29:978–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dedeurwaerder S, Desmedt C, Calonne E, Singhal SK, Haibe-kains B, Defrance M, et al. DNA methylation profiling reveals a predominant immune component in breast cancers. EMBO Mol Med. 2011;3:726–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cancer T, Atlas G. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:1–10.

    Google Scholar 

  101. Lang JE, Scott JH, Wolf DM, Novak P, Punj V, Jesus M, et al. Expression profiling of circulating tumor cells in metastatic breast cancer. Breast Cancer Res Treat. 2014;149:121.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Doherty R, Couldrey C, Huang W, State NC. Exploring genome wide bisulfite sequencing for DNA methylation analysis in livestock: a technical assessment. Front Genet. 2014;5:1–8.

    Article  CAS  Google Scholar 

  103. Wen L, Tang F. Single-cell sequencing in stem cell biology. Genome Biol. 2016. https://doi.org/10.1186/s13059-016-0941-0.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Saliba A, Westermann AJ, Gorski SA. Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res. 2014;42(14):8845–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wlodkowic D, Darzynkiewicz Z. Rise of the micromachines: microfluidics and the future of cytometry. Methods Cell Biol. 2011;102:105–25. https://doi.org/10.1016/B978-0-12-374912-3.00005-5.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Irish JM, Myklebust JH, Alizadeh AA, Houot R, Sharman JP, Czerwinski DK. B-Cell signaling networks reveal a negative prognostic human lymphoma cell subset that emerges during tumor progression. Proc Natl Acad Sci. 2010;107(29):12747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Blake LA, Wu B. One message, many translations: heterogeneity revealed with multicolor imaging. Mol cell. 2019;75(1):3–4.

    Article  CAS  PubMed  Google Scholar 

  108. Blake LA, Wu B. Previews one message, many translations: heterogeneity revealed with multicolor imaging. Mol Cell. 2019;75(1):3–4. https://doi.org/10.1016/j.molcel.2019.06.026.

    Article  CAS  PubMed  Google Scholar 

  109. Alizadeh AA, Aranda V, Bardelli A, Blanpain C, Bock C, Borowski C, et al. Toward understanding and exploiting tumor heterogeneity. Nat Med. 2015;21(8):1–8. https://doi.org/10.1038/nm.3915.

    Article  CAS  Google Scholar 

  110. Mayor S. Swiss vote “no” to comprehensive smoking ban. Lancet Oncol. 2012;13(11):e466. https://doi.org/10.1016/S1470-2045(12)70439-4.

    Article  Google Scholar 

  111. Leary RJ, Kinde I, Diehl F, Schmidt K, Clouser C, Duncan C, et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med. 2010;2(20):1–8.

    Article  Google Scholar 

  112. Seol H, Lee HJ, Choi Y, Lee HE, Kim YJ, Kim JH, et al. Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its clinicopathological significance. Mod Pathol. 2012;25:938–48.

    Article  CAS  PubMed  Google Scholar 

  113. Sood A, Miller AM, Brogi E, Sui Y, Mcdonough E, Santamaria-pang A, et al. Multiplexed immunofluorescence delineates proteomic cancer cell states associated with metabolism. JCI Insight. 2016;1(6):1–14.

    Article  Google Scholar 

  114. Meyer AS, Heiser LM. Systems biology approaches to measure and model phenotypic heterogeneity in cancer. Curr Opin Syst Biol. 2019;17:35–40. https://doi.org/10.1016/j.coisb.2019.09.002.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Wen Y, Wei Y, Zhang S, Li S, Liu H, Wang F. Cell subpopulation deconvolution reveals breast cancer heterogeneity based on DNA methylation signature. Brief Bioinform. 2017;18:426–40.

    CAS  PubMed  Google Scholar 

  116. Miura S, Vu T, Deng J, Buturla T, Oladeinde O. Power and pitfalls of computational methods for inferring clone phylogenies and mutation orders from bulk sequencing data. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-59006-2.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Malikic S, Jahn K, Kuipers J, Sahinalp SC, Beerenwinkel N. Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing da. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-10737-5.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wang N, Zheng J, Chen Z, Liu Y, Dura B, Kwak M, et al. Single-cell microRNA-mRNA co-sequencing reveals non-genetic heterogeneity and mechanisms of microRNA regulation. Nat Commun. 2019. https://doi.org/10.1038/s41467-018-07981-6.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Almendro V, Fuster G. Heterogeneity of breast cancer: etiology and clinical relevance. Clin Trans Oncol. 2011;13:767–73.

    Article  CAS  Google Scholar 

  120. Jesneck JL, Nolte LW, Baker JA, Floyd CE, Lo JY, Nolte LW. Optimized approach to decision fusion of heterogeneous data for breast cancer diagnosis. Med Phys. 2006;33:2945.

    Article  PubMed  Google Scholar 

  121. Clark BZ, Onisko A, Assylbekova B, Li X, Bhargava R, Dabbs DJ, et al. Breast cancer global tumor biomarkers: a quality assurance study of intratumoral heterogeneity. Mod Pathol. 2018. https://doi.org/10.1038/s41379-018-0153-0.

    Article  PubMed  Google Scholar 

  122. Guiu S, Michiels S, André F, Cortes J, Denkert C, Di Leo A, et al. Molecular subclasses of breast cancer: How do we define them? The IMPAKT 2012 working group statement. Ann Oncol. 2012;23:2997–3006.

    Article  CAS  PubMed  Google Scholar 

  123. Zardavas D, Irrthum A, Swanton C, Piccart M. Clinical management of breast cancer heterogeneity. Nat Rev Clin. 2015;12(7):381–94. https://doi.org/10.1038/nrclinonc.2015.73.

    Article  CAS  Google Scholar 

  124. Hon JDC, Singh B, Sahin A, Du G, Wang J, Wang VY. Breast cancer molecular subtypes: from TNBC to QNBC. Am J Cancer Res. 2016;6(9):1864–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. C Presentation. Breast cancer treatment: a review. JAMA. 2019;321(3):288.

    Article  Google Scholar 

  126. Kim J, De Sampaio PC, Lundy DM, Peng Q, Evans KW, Sugimoto H, et al. Heterogeneous perivascular cell coverage affects breast cancer metastasis and response to chemotherapy. JCI Insights. 2016;1(21):1–17.

    Google Scholar 

  127. Cai S, Allam M, Coskun AF. Forum multiplex spatial bioimaging for combination therapy design. Trends Cancer. 2020. https://doi.org/10.1016/j.trecan.2020.05.003.

    Article  PubMed  Google Scholar 

  128. Coley HM. Mechanisms and strategies to overcome chemotherapy resistance in metastatic breast cancer. Cancer Treat Rev. 2008;34:378–90.

    Article  CAS  PubMed  Google Scholar 

  129. Bergenfelz C, Larsson A, Von Stedingk K, Gruvberger-Saal S, Aaltonen K, Jansson S, Jernström H, Janols H, Wullt M, Bredberg A, Rydén L. Systemic monocytic-MDSCs are generated from monocytes and correlate with disease progression in breast cancer patients. Plos One. 2015;10(5):e0127028.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Beca F, Polyak K. Intratumor heterogeneity in breast cancer. In: Stearns V, editor. Novel biomarkers in the continuum of breast cancer. Cham: Springer; 2016. p. 169–89.

    Chapter  Google Scholar 

Download references

Acknowledgements

This research project was financially supported by Immunology Research Center at Tabriz University of Medical Sciences. This grant supported MSC thesis of Neda Barzgar Barough (The thesis code: 97/12/14 and ethical code: IR.TBZMED.VCR.REC.1398.288).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kobra Velaei.

Ethics declarations

Conflict of interest

N.B.B., F.S., and N.J. have participated in writing of main body of review article. In addition, H. Sh. has reviewed and edited the manuscript. Finally, K.V. was responsible for conceptualization, validation of different sections and illustration of figures.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzgar Barough, N., Sajjadian, F., Jalilzadeh, N. et al. Understanding breast cancer heterogeneity through non-genetic heterogeneity. Breast Cancer 28, 777–791 (2021). https://doi.org/10.1007/s12282-021-01237-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-021-01237-w

Keywords

Navigation