Skip to main content

Advertisement

Log in

Circular RNAs serve as miRNA sponges in breast cancer

  • Review Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Circular RNAs are a large group of non-coding RNAs with a closed-loop structure. circRNAs play significant roles in many biological processes as miRNA sponges, regulators for gene transcription, combining with RNA-binding proteins and translation of protein. Nowadays, circRNAs have become a research hotspot in the field of cancer and molecular biology. Accumulating evidences have indicated that circRNAs participate in the initiation and development of various cancers such as breast cancer. Breast cancer is a heterogeneous disease, which is the most common malignancy in women. The incidence and mortality rates of breast cancer indicate that it is the leading cause of cancer-related deaths. The goal of the present review is to introduce biogenesis, function characteristics and types of circRNAs, and also their biological functions on breast cancer, especially as miRNA sponges. Additionally, we discuss their use as a new therapeutic target for the treatment of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BCa:

Breast cancer

ncRNA:

Non-coding RNA

miRNA:

microRNA

circRNA:

Circular RNA,

RBPs:

RNA-binding proteins

MER:

miRNA response element

GFRA1:

GDNF family receptor alpha 1 protein

ARHGEF28:

Rho guanine nucleotide exchange factor 28

ZEB:

Zinc finger E-box-binding homeobox 1

ETS1:

ETS proto-oncogene 1

TFF1:

Trefoil factor 1

ZNF83:

Zinc finger protein 83

USF1:

Upstream transcription factor 1

BCL11A:

B-cell lymphoma/leukemia 11A

SOCS3:

Suppressor of cytokine signaling 3

RAF1:

RAF 1 proto-oncogene serine/threonine-protein kinase

NTRK3:

Neurotrophic receptor tyrosine kinase 3

FOXC1:

Forkhead box C1

ICTH:

Itchy E3 ubiquitin protein ligase

MTA1:

Metastasis-associated protein 1

E2F3:

E2F transcription factor 3

MUC19:

Mucin 19, oligomeric

CBX8:

Chromobox 8

Notch1:

Notch receptor 1

CCNE1:

Cyclin E1

RFC3:

Replication factor C subunit 3

ASS1:

Argininosuccinate synthase 1

HIPK3:

Homeodomain-interacting protein kinase 3

KIF4A:

Kinesin family member 4A

BARD1:

BRCA1-associated RING domain 1

References

  1. Wang X, Fang L. Advances in circular RNAs and their roles in breast cancer. J Exp Clin Cancer Res. 2018;37(1):206.

    PubMed  PubMed Central  Google Scholar 

  2. WHO: Geneva, Switzerland. Breast cancer. http://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/.

  3. Power EJ, Chin ML, Haq MM. Breast cancer incidence and risk reduction in the hispanic population. Cureus. 2018;10:e2235.

    PubMed  PubMed Central  Google Scholar 

  4. Misir S, Aliyazicioglu Y, Demir S, Turan I, Hepokur C. Effect of Turkish propolis on miRNA expression, cell cycle, and apoptosis in human breast cancer (MCF-7) Cells. Nutr Cancer. 2020;72(1):133–45.

    CAS  PubMed  Google Scholar 

  5. Zhou SY, Chen W, Yang SJ, Xu ZH, Hu JH, Zhang HD, et al. The emerging role of circular RNAs in breast cancer. Biosci Rep. 2019;39(6):BSR20190621.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wijnhoven BPL, Michael MZ, Watson DI. MicroRNAs and cancer. Br J Surg. 2007;94(1):23–30.

    CAS  PubMed  Google Scholar 

  7. Zhang P, Wu W, Chen Q, Xu ZH, Hu JH, Zhang HD, et al. Non-coding RNAs and their integrated networks. Integr Bioinform. 2019;16(3):20190027.

    Google Scholar 

  8. Guil S, Esteller M. RNA-RNA interactions in gene regulation: the coding and noncoding players. Trends Biochem Sci. 2015;40(5):248–56.

    CAS  PubMed  Google Scholar 

  9. Shang Q, Yang Z, Jia R, Ge S. The novel roles of circRNAs in human cancer. Mol Cancer. 2019;18(1):6.

    PubMed  PubMed Central  Google Scholar 

  10. Klinge CM. Non-coding RNAs in breast cancer: intracellular and intercellular communication. Noncoding RNA. 2018;4(4):40.

    CAS  PubMed Central  Google Scholar 

  11. Kazimierczyk M, Kasprowicz MK, Kasprzyk ME, Wrzesinski J. Human long noncoding RNA interactome: detection, characterization and function. Int J Mol Sci. 2020;21(3):1027.

    CAS  PubMed Central  Google Scholar 

  12. Zhao W, Dong M, Pan J, Wang Y, Zhou J, Ma J, et al. Circular RNAs: a novel target among non–coding RNAs with potential roles in malignant tumors (Review). Mol Med Rep. 2019;20(4):3463–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, et al. CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer. 2017;16:94.

    PubMed  PubMed Central  Google Scholar 

  14. Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, et al. Exosomal circRNAs: biogenesis, effect and application in human diseases. Mol Cancer. 2019;18:116.

    PubMed  PubMed Central  Google Scholar 

  15. Li M, Ding W, Sun T, Tariq MA, Xu T, Li P, et al. Biogenesis of circular RNAs and their roles in cardiovascular development and pathology. FEBS J. 2018;285(2):220–32.

    CAS  PubMed  Google Scholar 

  16. Floris G, Zhang L, Follesa P, Sun T. Regulatory role of circular RNAs and neurological disorders. Mol Neurobiol. 2017;54(7):5156–65.

    CAS  PubMed  Google Scholar 

  17. Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 2016;7:11215.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22:256–64.

    PubMed  Google Scholar 

  19. Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 2017;27(5):626–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE. 2012;7:e30733.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K, Li H. Circular RNA: a new star of noncoding RNAs. Cancer Lett. 2015;365(2):141–8.

    CAS  PubMed  Google Scholar 

  22. Celotto AM, Graveley BR. Alternative splicing of the Drosophila Dscam pre-mRNA is both temporally and spatially regulated. Genetics. 2001;159:599–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Shabaninejad Z, Vafadar A, Movahedpour A, Ghasemi Y, Namdar A, Fathizadeh H, et al. CircularRNAs in cancer: new insights into functions and implications in ovarian cancer. J Ovarian Res. 2019;12:84.

    PubMed  PubMed Central  Google Scholar 

  24. Kim SJ, Oh JS, Shin JY, Lee KD, Sung KW, et al. Development of microRNA-145 for therapeutic application in breast cancer. J Control Release. 2011;155:427–34.

    CAS  PubMed  Google Scholar 

  25. Hogg DR, Harries LW. Human genetic variation and its effect on miRNA biogenesis, activity and function. Biochem Soc Trans. 2014;42:1184–9.

    CAS  PubMed  Google Scholar 

  26. Mostafapour KH, Salimi M, Khori V, Rastkari N, Amanzadeh A, Salimi M. Mitochondrial apoptosis ınduced by chamaemelum nobile extract in breast cancer cells. Iran J Pharm Res. 2016;15:197–204.

    Google Scholar 

  27. Verduci L, Strano S, Yarden Y, Blandino G. The circRNA-microRNA code: emerging implications for cancer diagnosis and treatment. Mol Oncol. 2019;13(4):669–80.

    PubMed  PubMed Central  Google Scholar 

  28. Glisovic T, Bachorik JL, Yong J, Dreyfuss G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 2008;582(14):1977–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen Y, Varani G. Engineering RNA-binding proteins for biology. FEBS J. 2013;280(16):3734–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Greene J, Baird AM, Brady L, Lim M, Gray SG, McDermott R, et al. Circular RNAs: biogenesis, function and role in human diseases. Front Mol Biosci. 2017;4:38.

    PubMed  PubMed Central  Google Scholar 

  31. Du WW, Yang WN, Chen Y, Wu ZK, Foster FS, Yang ZG, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 2017;38:1402–12.

    CAS  PubMed  Google Scholar 

  32. Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016;44:2846–58.

    PubMed  PubMed Central  Google Scholar 

  33. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56:55–66.

    CAS  PubMed  Google Scholar 

  34. Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 2017;14(3):361–9.

    PubMed  PubMed Central  Google Scholar 

  35. Turner M, Galloway A, Vigorito E. Noncoding RNA and its associated proteins as regulatory elements of the immune system. Nat Immunol. 2014;15:484–4491.

    CAS  PubMed  Google Scholar 

  36. Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, et al. Circular intronic long noncoding RNAs. Mol Cell. 2013;51(6):792–806.

    CAS  PubMed  Google Scholar 

  37. He RF, Liu P, Xie XM, Zhou YJ, Liao QJ, Xiong W, et al. circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a. J Exp Clin Cancer Res. 2017;36:145.

    PubMed  PubMed Central  Google Scholar 

  38. Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 2010;6(12):e1001233.

    PubMed  PubMed Central  Google Scholar 

  39. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–91.

    CAS  PubMed  Google Scholar 

  40. Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, et al. Translation of circRNAs. Mol Cell. 2017;66(9–21):e27.

    Google Scholar 

  41. Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 2018;110:304–15.

    CAS  Google Scholar 

  42. Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 2018;37:1805–14.

    CAS  PubMed  Google Scholar 

  43. Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun. 2018;9:4475.

    PubMed  PubMed Central  Google Scholar 

  44. Li L, Yuan L, Luo J, Gao J, Guo J, Xie X. MiR-34a inhibits proliferation and migration of breast cancer through down-regulation of Bcl-2 and SIRT1. Clin Exp Med. 2013;13(2):109–17.

    PubMed  Google Scholar 

  45. Liang HF, Zhang XZ, Liu B, Jia GT, Li WL. Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271. Am J Cancer Res. 2017;7(7):1566–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tang YY, Zhao P, Zou TN, Duan JJ, Zhi R, Yang SY, et al. Circular RNA hsa_circ_0001982 promotes breast cancer cell carcinogenesis through decreasing miR-143. DNA Cell Biol. 2017;36:11.

    Google Scholar 

  47. Zhang HD, Jiang LH, Hou JC, Zhou SY, Zhong SL, Zhu LP, et al. Circular RNA hsa_circ_0072995 promotes breast cancer cell migration and invasion through sponge for miR-30c-2-3p. Epigenomics. 2018;10(9):1229–42.

    CAS  PubMed  Google Scholar 

  48. Shukla K, Sharma AK, Ward A, Will R, Hielscher T, Balwierz A, et al. MicroRNA-30c-2-3p negatively regulates NF-kappaB signaling and cell cycle progression through downregulation of TRADD and CCNE1 in breast cancer. Mol. Oncol. 2015;9(6):1106–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu Z, Zhou Y, Liang G, Ling Y, Tan W, Tan L, et al. Circular RNA hsa_circ_001783 regulates breast cancer progression via sponging miR-200c-3p. Cell Death Dis. 2019;10(2):55.

    PubMed  PubMed Central  Google Scholar 

  50. Korpal M, Kang Y. The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol. 2008;5:115–9.

    CAS  PubMed  Google Scholar 

  51. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009;138:592–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pan G, Mao A, Liu J, Lu J, Ding J, Liu W. Circular RNA hsa_circ_0061825 (circ-TFF1) contributes to breast cancer progression through targeting miR-326/TFF1 signalling. Cell Prolif. 2020;53(2):e12720.

    PubMed  PubMed Central  Google Scholar 

  53. Zhang HD, Jiang LH, Hou JC, Zhong SL, Zhou SY, Zhu LP, et al. Circular RNA hsa_circ_0052112 promotes cell migration and invasion by acting as sponge for miR-125a-5p in breast cancer. Biomed Pharmacother. 2018;107:1342–53.

    CAS  PubMed  Google Scholar 

  54. Jiang L, Huang Q, Zhang S, Zhang Q, Chang J, Qiu X, et al. Hsa-miR-125a- 3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer. 2010;10:318.

    PubMed  PubMed Central  Google Scholar 

  55. Zeng K, He B, Yang BB, Xu T, Chen X, Xu M, et al. The pro-metastasis effect of circANKS1B in breast cancer. Mol Cancer. 2018;17(1):160.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhao J, Zou H, Han C, Ma J, Zhao J, Tang J. Circlular RNA BARD1 (hsa_circ_0001098) overexpression in breast cancer cells with TCDD treatment could promote cell apoptosis via miR-3942/BARD1 axis. Cell Cycle. 2018;17:2731–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yuan C, Zhou L, Zhang L, Yin K, Peng J, Sha R, et al. Identification and integrated analysis of key differentially expressed circular RNAs in ER-positive subtype breast cancer. Epigenomics. 2019;11:297–321.

    CAS  PubMed  Google Scholar 

  58. Tang H, Huang X, Wang J, Yang L, Kong Y, Gao G, et al. circKIF4A acts as a prognostic factor and mediator to regulate the progression of triple-negative breast cancer. Mol Cancer. 2019;18(1):23.

    PubMed  PubMed Central  Google Scholar 

  59. Kong Y, Yang L, Wei W, Lyu N, Zou Y, Gao G, et al. CircPLK1 sponges miR-296-5p to facilitate triple-negative breast cancer progression. Epigenomics. 2019;11(10):1163–76.

    CAS  PubMed  Google Scholar 

  60. Hou JC, Xu Z, Zhong SL, Zhang H, Jiang LH, Chen X, et al. Circular RNA circASS1 Is downregulated in breast cancer cells MDA-MB-231 and suppressed invasion and migration. Epigenomics. 2019;11(2):199–213.

    CAS  PubMed  Google Scholar 

  61. Hu Y, Guo F, Zhu H, Tan X, Zhu X, Liu X, et al. Circular RNA-0001283 suppresses breast cancer proliferation and invasion via MiR-187/HIPK3 axis. Med Sci Monit. 2020;26:e921502-1–9.

    Google Scholar 

  62. Chen B, Wei W, Huang X, Xie X, Kong Y, Dai D, et al. circEPSTI1 as a prognostic marker and mediator of triple-negative breast cancer progression. Theranostics. 2018;8(14):4003–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu JZ, Shao CC, Wang XJ, Zhao X, Chen JQ, Ouyang YX, et al. circTADA2As suppress breast cancer progression and metastasis via targeting miR-203a-3p/SOCS3 axis. Cell Death Dis. 2019;10(3):175.

    PubMed  PubMed Central  Google Scholar 

  64. Gao D, Qi X, Zhang X, Fang K, Guo Z, Li L. hsa_circRNA_0006528 as a competing endogenous RNA promotes human breast cancer progression by sponging miR-7-5p and activating the MAPK/ERK signaling pathway. Mol Carcinog. 2019;58(4):554–64.

    CAS  PubMed  Google Scholar 

  65. Shi Y, Luo X, Li P, Tan J, Wang X, Xiang T, et al. miR-7-5p suppresses cell proliferation and induces apoptosis of breast cancer cells mainly by targeting REGγ. Cancer Lett. 2015;358:27–36.

    CAS  PubMed  Google Scholar 

  66. Yao Y, Zhao Z, Han X, Lin S, Nie C, Fang H. Circular RNA-100219 promotes breast cancer progression by binding to microRNA-485-3p. J BUON. 2019;24(2):501–8.

    PubMed  Google Scholar 

  67. Wu J, Jiang Z, Chen C, Hu Q, Fu Z, Chen J, et al. CircIRAK3 sponges miR-3607 to facilitate breast cancer metastasis. Cancer Lett. 2018;430:179–92.

    CAS  PubMed  Google Scholar 

  68. Wang ST, Liu LB, Li XM, Wang YF, Xie PJ, Li Q, et al. Circ-ITCH regulates triple-negative breast cancer progression through the Wnt/β-catenin pathway. Neoplasma. 2019;66(2):232–9.

    CAS  PubMed  Google Scholar 

  69. Wang S, Li Q, Wang Y, Li X, Wang R, Kang Y, Xue X, Meng R, Wei Q, Feng X. Upregulation of circ-UBAP2 predicts poor prognosis and promotes triple-negative breast cancer progression through the miR-661/MTA1 pathway. Biochem Biophys Res Commun. 2018;505(4):996–1002.

    CAS  PubMed  Google Scholar 

  70. Liu Y, Lu C, Zhou Y, Zhang Z, Sun L. Circular RNA hsa_circ_0008039 promotes breast cancer cell proliferation and migration by regulating miR-432-5p/E2F3 axis. Biochem Biophys Res Commun. 2018;502(3):358–63.

    CAS  PubMed  Google Scholar 

  71. Song L, Xiao Y. Downregulation of hsa_circ_0007534 suppresses breast cancer cell proliferation and invasion by targeting miR-593/MUC19 signal pathway. Biochem Biophys Res Commun. 2018;503(4):2603–10.

    CAS  PubMed  Google Scholar 

  72. Xu Y, Yao Y, Leng K, Ji D, Qu L, Liu Y, et al. Increased expression of circular RNA circ_0005230 indicates dismal prognosis in breast cancer and regulates cell proliferation and invasion via miR-618/CBX8 signal pathway. Cell Physiol Biochem. 2018;51(4):1710–22.

    CAS  PubMed  Google Scholar 

  73. Yan L, Zheng M, Wang H. Circular RNA hsa_circ_0072309 inhibits proliferation and invasion of breast cancer cells via targeting miR-492. Cancer Manag Res. 2019;11:1033–41.

    PubMed  PubMed Central  Google Scholar 

  74. Wang H, Xiao Y, Wu L, Ma D. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-000911/miR-449a pathway in breast carcinogenesis. Int J Oncol. 2018;52(3):743–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang R, Xing L, Zheng X, Sun Y, Wang X, Chen J. The circRNA circAGFG1 acts as a sponge of miR-195-5p to promote triple-negative breast cancer progression through regulating CCNE1 expression. Mol Cancer. 2019;18(1):4.

    PubMed  PubMed Central  Google Scholar 

  76. Zhou J, Zhang WW, Peng F, Sun JY, He ZY, Wu SG. Downregulation of hsa_circ_0011946 suppresses the migration and invasion of the breast cancer cell line MCF-7 by targeting RFC3. Cancer Manag Res. 2018;10:535–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Geng Y, Jiang J, Wu C. Function and clinical significance of circRNAs in solid tumors. J Hematol Oncol. 2018;11:98.

    PubMed  PubMed Central  Google Scholar 

  78. Zhang M, Xin Y. Circular RNAs: a new frontier for cancer diagnosis and therapy. J Hematol Oncol. 2018;11:21.

    PubMed  PubMed Central  Google Scholar 

  79. Puttaraju M, Been MD. Group I permuted intron-exon (PIE) sequences selfsplice to produce circular exons. Nucleic Acids Res. 1992;20(20):5357–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang Y, Xue W, Li X, Zhang J, Chen S, Zhang JL, et al. The biogenesis of nascent circular RNAs. Cell Rep. 2016;15(3):611–24.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sema Misir.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misir, S., Hepokur, C., Aliyazicioglu, Y. et al. Circular RNAs serve as miRNA sponges in breast cancer. Breast Cancer 27, 1048–1057 (2020). https://doi.org/10.1007/s12282-020-01140-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-020-01140-w

Keywords

Navigation