Vitamin K2 induces non-apoptotic cell death along with autophagosome formation in breast cancer cell lines

Abstract

Background

Vitamin K2 (VK2) has been reported to induce apoptosis in many types of cancer cells including leukemia. However, there are no precise reports regarding the breast cancer cells. From the stand point of clinical implications of VK2 including chemoprevention, we investigated the effects of VK2 on breast cancer cell lines.

Methods

Breast cancer cell lines were cultured with VK2, and the cytotoxicity and cell death phenotype were examined. The HL-60 leukemia cells were used as a control for VK2-induced apoptosis.

Results

VK2 exhibited the cytotoxic effect, especially in triple negative breast cancer cell lines, namely, MDA-MB-231 and MDA-MB-468. However, in contrast to HL-60 cells, typical features of the cells undergoing apoptosis, such as chromatin condensation, nuclear fragments, and cleavage of caspase-3 were not detected. Transmission electron microscopy exhibited an increased number of autophagosomes/autolysosomes with plasma membrane integrity. An autophagy inhibitor, 3-methyladenine, apparently attenuated VK2-induced cytotoxicity, which indicated the involvement of autophagy-dependent cell death. Interestingly, both VK2-induced non-apoptotic cell death in MDA-MB-231 cells and VK2-induced apoptosis in HL-60 cells were suppressed in the presence of reactive oxygen species (ROS) scavengers. Therefore, ROS production by VK2 seems to be located up-stream in the molecular machinery for both the types of cell death execution.

Conclusion

The VK2 induced non-apoptotic cell death along with autophagy, in triple negative breast cancer cell lines. Cell death phenotype induced by VK2 appears to differ among the type of cancers. This suggests the possibility of using VK2 for the breast cancer therapy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  Google Scholar 

  2. 2.

    Olson RE. The function and metabolism of vitamin K. Ann Rev Nutr. 1984;4:281–337.

    CAS  Article  Google Scholar 

  3. 3.

    Fusaro M, Mereu MC, Aghi A, Iervasi G, Gallieni M. Vitamin K and bone. Clin Cases Miner Bone Metab. 2017;14:200–6.

    Article  Google Scholar 

  4. 4.

    Lamson DW, Plaza SM. The anticancer effects of vitamin K. Altern Med Rev. 2003;8:303–18.

    PubMed  Google Scholar 

  5. 5.

    Duthie SJ, Grant MH. The toxicity of menadione and mitoxantrone in human liver-derived Hep G2 hepatoma cells. Biochem Pharmacol. 1989;38:1247–55.

    CAS  Article  Google Scholar 

  6. 6.

    Hitomi M, Yokoyama F, Kita Y, Nonomura T, Masaki T, Yoshiji H, et al. Antitumor effects of vitamins K1, K2 and K3 on hepatocellular carcinoma in vitro and in vivo. Int J Oncol. 2005;26:713–20.

    CAS  PubMed  Google Scholar 

  7. 7.

    Tokita H, Tsuchida A, Miyazawa K, Ohyashiki K, Katayanagi S, Sudo H, et al. Vitamin K2-induced antitumor effects via cell-cycle arrest and apoptosis in gastric cancer cell lines. Int J Mol Med. 2006;17:235–43.

    CAS  PubMed  Google Scholar 

  8. 8.

    Kawakita H, Tsuchida A, Miyazawa K, Naito M, Shigoka M, Kyo B, et al. Growth inhibitory effects of vitamin K2 on colon cancer cell lines via different types of cell death including autophagy and apoptosis. Int J Mol Med. 2009;23:709–16.

    CAS  PubMed  Google Scholar 

  9. 9.

    Yoshida T, Miyazawa K, Kasuga I, Yokoyama T, Minemura K, Ustumi K, et al. Apoptosis induction of vitamin K2 in lung carcinoma cell lines: the possibility of vitamin K2 therapy for lung cancer. Int J Oncol. 2003;23:627–32.

    CAS  PubMed  Google Scholar 

  10. 10.

    Shibayama-Imazu T, Sonoda I, Sakairi S, Aiuchi T, Ann WW, Nakajo S, et al. Production of superoxide and dissipation of mitochondrial transmembrane potential by vitamin K2 trigger apoptosis in human ovarian cancer TYK-nu cells. Apoptosis. 2006;11:1535–43.

    CAS  Article  Google Scholar 

  11. 11.

    Xv F, Chen J, Duan L, Li S. Research progress on the anticancer effects of vitamin K2. Oncol Lett. 2018;15:8926–34.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Orimo H, Shiraki M, Tomita A, Morri H, Fujita T, Ohata M. Effects of menatetrenone on the bone and calcium metabolism in osteoporosis: a double-blind placebo-controlled study. J Bone Miner Metab. 1998;16:106–12.

    CAS  Article  Google Scholar 

  13. 13.

    Ishii M, Shimomura M, Hasegawa J, Morishita N, Nakai H, Kayano M, et al. Evaluation of pharmacokinetics and bioequivalence of soft capsules of menatetrenone. J Clin Therap Med. 1992;8:571–85.

    Google Scholar 

  14. 14.

    Tadano K, Yuzuriha T, Miyake Y. The placental and mammary transport of [14C]menaquinone-4 in rats. J Nutr Sci Vitaminol (Tokyo). 1989;35:393–405.

    CAS  Article  Google Scholar 

  15. 15.

    Harshman SG, Fu X, Karl JP, Barger K, Lamon-Fava S, Kuliopulos A, et al. Tissue concentrations of vitamin K and expression of key enzymes of vitamin K metabolism are influenced by sex and diet but not housing in C57Bl6 Mice. J Nutr. 2016;146:1521–7.

    CAS  Article  Google Scholar 

  16. 16.

    Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J, et al. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS ONE. 2009;4:e6146. https://doi.org/10.1371/journal.pone.0006146.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011;13:215. https://doi.org/10.1186/bcr2889.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Saito Y, Moriya S, Kazama H, Hirasawa K, Miyahara K, Kokuba H, et al. Amino acid starvation culture condition sensitizes EGFR-expressing cancer cell lines to gefitinib-mediate cytotoxicity by inducing atypical necroptosis. Int J Oncol. 2018;52:1165–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Yaguchi M, Miyazawa K, Katagiri T, Nishimaki J, Kizaki M, Tohyama K, et al. Vitamin K2 and its derivatives induce apoptosis in leukemia cells and enhance the effect of all-trans retinoic acid. Leukemia. 1997;11:779–87.

    CAS  Article  Google Scholar 

  20. 20.

    Miyazawa K, Yaguchi M, Funato K, Gotoh A, Kawanishi Y, Nishizawa J, et al. Apoptosis/differentiation-inducing effects of vitamin K2 on HL-60 cells: dichotomous nature of vitamin K2 in leukemia cells. Leukemia. 2001;15:1111–7.

    CAS  Article  Google Scholar 

  21. 21.

    Petrie EJ, Czabotar PE, Murphy JM. The Structural basis of necroptotic cell death signaling. Trends Biochem Sci. 2019;44:53–63.

    CAS  Article  Google Scholar 

  22. 22.

    Declercq W, Vanden Berghe T, Vandenabeele P. RIP kinases at the crossroads of cell death and survival. Cell. 2009;138:229–32.

    CAS  Article  Google Scholar 

  23. 23.

    Tooze SA, Dooley HC, Jefferies HB, Joachim J, Judith D, Lamb CA, et al. Assessing mammalian autophagy. Methods Mol Biol. 2015;1270:155–65.

    CAS  Article  Google Scholar 

  24. 24.

    Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Arozena AA, et al. Guidelines for the use and interpretation of assays for monitoring autophaguy (3rd edition). Autophagy. 2016;12(1):1–222. https://doi.org/10.1080/15548627.2015.1100356.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Codogno P, Meijer AJ. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 2005;Suppl 2:1509–18.

    Article  Google Scholar 

  26. 26.

    Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol. 2008;9:1004–100.

    CAS  Article  Google Scholar 

  27. 27.

    Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nature Cell Biol. 2011;13:184–90.

    CAS  Article  Google Scholar 

  28. 28.

    Yokoyama T, Miyazawa K, Naito M, Toyotake J, Tauchi T, Itoh M, et al. Vitamin K2 induces autophagy and apoptosis simultaneously in leukemia cells. Autophagy. 2008;4:629–40.

    CAS  Article  Google Scholar 

  29. 29.

    Dong Z, Cui H. The autophagy-lysosomal pathways and their emerging roles in modulating proteostasis in tumors. Cells. 2018. https://doi.org/10.3390/cells8010004.

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Poillet-Perez L, Despouy G, Delage-Mourroux R, Boyer-Guittaut M. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol. 2015;4:184–92.

    CAS  Article  Google Scholar 

  31. 31.

    Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007;26:1749–60.

    CAS  Article  Google Scholar 

  32. 32.

    Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.

    CAS  Article  Google Scholar 

  33. 33.

    Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 2004;11:381–9.

    CAS  Article  Google Scholar 

  34. 34.

    Beaudin S, Kokabee L, Welsh J. Divergent effects of vitamins K1 and K2 on triple negative breast cancer cells. Oncotarget. 2019;10:2292–305.

    Article  Google Scholar 

  35. 35.

    Karasawa S, Azuma M, Kasama T, Sakamoto S, Kabe Y, Imai T, et al. Vitamin K2 covalently binds to Bak and induces Bak-mediated apoptosis. Mol Pharmacol. 2013;83:613–20.

    CAS  Article  Google Scholar 

  36. 36.

    Habu D, Shiomi S, Tamori A, Takeda T, Tanaka T, Kubo S, et al. Role of vitamin K2 in the development of hepatocellular carcinoma in women with viral cirrhosis of the liver. JAMA. 2004;292:358–61.

    CAS  Article  Google Scholar 

  37. 37.

    Yoshida H, Shiratori Y, Kudo M, Shiina S, Mizuta T, Kojiro M, et al. Effect of vitamin K2 on the recurrence of hepatocellular carcinoma. Hepatology. 2011;54:532–40.

    CAS  Article  Google Scholar 

  38. 38.

    Wei G, Wang M, Hyslop T, Wang Z, Carr BI. Vitamin K enhancement of sorafenib-mediated HCC cell growth inhibition in vitro and in vivo. Int J Cancer. 2010;127:2949–58.

    CAS  Article  Google Scholar 

  39. 39.

    Jung DH, Hwang S, Song GW, Ryoo BY, Kim N, Tak E, Hong HN. An interim safety analysis of hepatocellular carcinoma patients administrating oral vitamin K with or without sorafenib. Korean J Hepatobil Pancreat. 2015;19:1–5.

    Article  Google Scholar 

  40. 40.

    Haruna Y, Hasegawa N, Imanaka K, Kawamoto S, Inoue A. Clinical impact of vitamin K dosing on sorafenib treatment for hepatocellular carcinoma. J Cancer. 2017;8:1988–94.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by funds provided through the Strategic Research Foundation at Private Universities (S1411011, 2014–2018) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and by JSPS KAKENHI Grant Numbers JP26460478 to KM. We would like to thank Editage (www.editage.jp) for English language editing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Keisuke Miyazawa.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miyazawa, S., Moriya, S., Kokuba, H. et al. Vitamin K2 induces non-apoptotic cell death along with autophagosome formation in breast cancer cell lines. Breast Cancer 27, 225–235 (2020). https://doi.org/10.1007/s12282-019-01012-y

Download citation

Keywords

  • Breast cancer
  • Vitamin K2
  • Autophagy
  • Apoptosis
  • Reactive oxygen species