Skip to main content

Advertisement

Log in

Candidate miRNAs in human breast cancer biomarkers: a systematic review

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

Breast cancer (BC) is the most prevalent cancer and the main cause of cancer deaths among females around the world. For early diagnosis of BC, there would be an immediate and essential requirement to search for sensitive biomarkers.

Methods

To identify candidate miRNA biomarkers for BC, we performed a general systematic review regarding the published miRNA profiling researches comparing miRNA expression level between BC and normal tissues. A miRNA ranking system was selected, which considered frequency of comparisons in direction and agreement of differential expression.

Results

We determined that two miRNAs (mir-21 and miR-210) were upregulated consistently and six miRNAs (miR-145, miR-139-5p, miR-195, miR-99a, miR-497 and miR-205) were downregulated consistently in at least three studies. MiR-21 as the most consistently reported miRNA was upregulated in six profiling studies.

Conclusions

Although these miRNAs require being validated and further investigated, they could be potential candidates for BC miRNA biomarkers and used for early prognosis or diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Torre Lindsey A, Siegel Rebecca L, Ferlay Jacques, Lortet-Tieulent Joannie, Jemal Ahmedin. Global Cancer Statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  2. Smigal CJA, Ward E, Cokkinides V, Smith R, Howe HL, et al. Trends in breast cancer by race and ethnicity: update 2006. CA Cancer J Clin. 2006;56:168–83.

    Article  PubMed  Google Scholar 

  3. Tryggvadottir LGM, Bray F, Klint A, Hakulinen T, Storm HH, et al. Trends in the survival of patients diagnosed with breast cancer in the Nordic countries 1964–2003 followed up to the end of 2006. Acta Oncol. 2010;49:624–31.

    Article  PubMed  Google Scholar 

  4. Rosso SGA, Zanetti R, Bray F, Zakelj M, Zagar T, et al. Up-to-date estimates of breast cancer survival for the years 2000–2004 in 11 European countries: the role of screening and a comparison with data from the United States. Eur J Cancer. 2010;46:3351–7.

    Article  PubMed  Google Scholar 

  5. Holleczek BAV, Stegmaier C, Brenner H. Trends in breast cancer survival in Germany from 1976 to 2008—a period analysis by age and stage. Cancer Epidemiol. 2011;35:399–406.

    Article  PubMed  Google Scholar 

  6. Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R, Waldron W, et al. SEER cancer statistics review, 1975-2008. National Cancer Institute, Bethesda, MD. Based on November 2010 SEER data submission, posted to the SEER web site, 2011. http://seer.cancer.gov/csr/1975_2008/. Accessed 1 Aug 2017

  7. Sankaranarayanan RSR, Brenner H, Chen K, Chia KS, Chen JG, et al. Cancer survival in Africa, Asia, and Central America: a population-based study. Lancet Oncol. 2010;11:165–73.

    Article  PubMed  Google Scholar 

  8. Wiemer EA. The role of microRNAs in cancer: no small matter. Eur J Cancer Epidemiol. 2007;43:1529–44.

    Article  CAS  Google Scholar 

  9. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.

    Article  CAS  PubMed  Google Scholar 

  10. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.

    Article  CAS  PubMed  Google Scholar 

  11. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  12. Cummins JM, Velculescu VE. Implications of micro-RNA profiling for cancer diagnosis. Oncogene. 2006;25:6220–7.

    Article  CAS  PubMed  Google Scholar 

  13. Kent OA, Mendell JT. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene. 2006;25:6188–96.

    Article  CAS  PubMed  Google Scholar 

  14. Iorio MVCC. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4:143–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma YZP, Yang J, Liu Z, Yang Z, et al. Candidate microRNA biomarkers in human colorectal cancer: systematic review profiling studies and experimental validation. Int J Cancer. 2012;130:2077–87.

    Article  CAS  PubMed  Google Scholar 

  16. Chan SKGO, Tai IT, Jones SJ. Meta-analysis of colorectal cancer gene expression profiling studies identifies consistently reported candidate biomarkers. Cancer Epidemiol Biomark Prev. 2008;17:543–52.

    Article  CAS  Google Scholar 

  17. Griffith OLMA, Jones SJ, Wiseman SM. Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol. 2006;24:5043–51.

    Article  CAS  PubMed  Google Scholar 

  18. Ji-Lin Wang YH, Xuan Kong, Zhen-Hua Wang, Hao-Yan Chen, Jie Xu, Jing-Yuan Fang. Candidate microRNA biomarkers in human gastric cancer: a systematic review and validation study. PLoS One. 2013;8:1–8.

    Google Scholar 

  19. Sun J, Li M, Li Z, Xue J, Lan X, Zhang C, et al. Identification and profiling of conserved and novel microRNAs from Chinese Qinchuan bovine longissimus thoracis. BMC Genom. 2013;14:42.

    Article  CAS  Google Scholar 

  20. Hu J, Xu J, Wu Y, Chen Q, Zheng W, Lu X, et al. Identification of microRNA-93 as a functional dysregulated miRNA in triple-negative breast cancer. Tumour Biol. 2015;36:251–8.

    Article  CAS  PubMed  Google Scholar 

  21. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65:7065–70.

    Article  CAS  PubMed  Google Scholar 

  22. Matamala N, Vargas MT, Gonzalez-Campora R, Minambres R, Arias JI, Menendez P, et al. Tumor microRNA expression profiling identifies circulating microRNAs for early breast cancer detection. Clin Chem. 2015;61:1098–106.

    Article  CAS  PubMed  Google Scholar 

  23. Navon R, Wang H, Steinfeld I, Tsalenko A, Ben-Dor A, Yakhini Z. Novel rank-based statistical methods reveal microRNAs with differential expression in multiple cancer types. PLoS One. 2009;4:e8003.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pena-Chilet M, Martinez MT, Perez-Fidalgo JA, Peiro-Chova L, Oltra SS, Tormo E, et al. MicroRNA profile in very young women with breast cancer. BMC Cancer. 2014;14:529.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G, et al. Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res. 2007;67:11612–20.

    Article  CAS  PubMed  Google Scholar 

  26. Sun EH, Zhou Q, Liu KS, Wei W, Wang CM, Liu XF, et al. Screening miRNAs related to different subtypes of breast cancer with miRNAs microarray. Eur Rev Med Pharmacol Sci. 2014;18:2783–8.

    PubMed  Google Scholar 

  27. Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 2008;14:2348–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang K, Zhao S, Wang Q, Yang HS, Zhu J, Ma R. Identification of microRNAs in nipple discharge as potential diagnostic biomarkers for breast cancer. Ann Surg Oncol. 2015;22(Suppl 3):S536–44.

    Article  PubMed  Google Scholar 

  29. Zhang M, Liu D, Li W, Wu X, Gao C, Li X. Identification of featured biomarkers in breast cancer with microRNA microarray. Arch Gynecol Obstet. 2016;294:1047–53.

    Article  CAS  PubMed  Google Scholar 

  30. Bhattacharya A, Cui Y. SomamiR 2.0: a database of cancer somatic mutations altering microRNA–ceRNA interactions. Nucleic Acids Res. 2016;44(D1):D1005–10.

    Article  CAS  PubMed  Google Scholar 

  31. Meng X, Wang J, Yuan C, Li X, Zhou Y, Hofestadt R, et al. CancerNet: a database for decoding multilevel molecular interactions across diverse cancer types. Oncogenesis. 2015;4:e177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thakur S, Grover RK, Gupta S, Yadav AK, Das BC. Identification of specific miRNA signature in paired sera and tissue samples of indian women with triple negative breast cancer. PLoS One. 2016;11:e0158946.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kodahl AR, Lyng MB, Binder H, Cold S, Gravgaard K, Knoop AS, et al. Novel circulating microRNA signature as a potential non-invasive multi-marker test in ER-positive early-stage breast cancer: a case control study. Mol Oncol. 2014;8:874–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shimomura A, Shiino S, Kawauchi J, Takizawa S, Sakamoto H, Matsuzaki J, et al. Novel combination of serum microRNA for detecting breast cancer in the early stage. Cancer Sci. 2016;107:326–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alder HTC, Chen H, Jiang Y, Smalley KJ, et al. Dysregulation of miR-31 and miR-21 induced by zinc deficiency promotes esophageal cancer. Carcinogenesis. 2012;33:1736–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Iliopoulos DJS, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 2010;39:493–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Han MWY, Liu M, Bi X, Bao J, et al. MiR-21 regulates epithelial-mesenchymal transition phenotype and hypoxia-inducible factor-1 a expression in third-sphere forming breast cancer stem cell-like cells. Cancer Sci. 2012;103:1058–64.

    Article  CAS  PubMed  Google Scholar 

  38. Fang HXJ, Zhang M, Zhao Z, Wan Y, Yao Y. miRNA-21 promotes proliferation and invasion of triple-negative breast cancer cells through targeting PTEN. Am J Transl Res. 2017;9:953–61.

    PubMed  PubMed Central  Google Scholar 

  39. Tang YZX, Ji J, Chen L, Cao J, Luo J, Zhang S. High expression levels of miR-21 and miR-210 predict unfavorable survival in breast cancer: a systemic review and meta-analysis. Int J Biol Markers. 2015;30:e347–58.

    Article  PubMed  Google Scholar 

  40. Liu TY, HZ, Du SM, Li J, Wen XH. Expression of microRNA-210 in tissue and serum of renal carcinoma patients and its effect on renal carcinoma cell proliferation, apoptosis, and invasion. Genet Mol Res. 2016;15:15017746.

    CAS  PubMed  Google Scholar 

  41. Rothé FIM, Chaboteaux C, Haibe-Kains B, Kheddoumi N, Majjaj S, Badran B, Fayyad-Kazan H, Desmedt C, Harris AL, Piccart M, Sotiriou C. Global microRNA expression profiling identifies MiR-210 associated with tumor proliferation, invasion and poor clinical outcome in breast cancer. PLoS One. 2011;6:e20980.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu DXH, Wang F, Chen C, Long J. MicroRNA-210 interacts with FBXO31 to regulate cancer proliferation cell cycle and migration in human breast cancer. Onco Targets Ther. 2016;23:5245–55.

    Google Scholar 

  43. Bandrés ECE, Agirre X, Malumbres R, Zárate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzó M, García-Foncillas J. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer. 2006;19(5):29–39.

    Article  Google Scholar 

  44. Yanaihara NCN, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–98.

    Article  CAS  PubMed  Google Scholar 

  45. LE Szczyrba J, Wach S, Jung V, Unteregger G, Barth S, Grobholz R, Wieland W, Stöhr R, Hartmann A, Wullich B, Grässer F. The microRNA profile of prostate carcinoma obtained by deep sequencing. Mol Cancer Res. 2010;8:529–38.

    Article  CAS  PubMed  Google Scholar 

  46. Kano MSN, Kikkawa N, Fujimura L, Hoshino I, Akutsu Y, Chiyomaru T, Enokida H, Nakagawa M, Matsubara H. miR-145, miR-133a and miR-133b: tumor suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer Cell. 2010;127:2804–14.

    Article  CAS  Google Scholar 

  47. Zhao HKX, Xia X, Wo L, Gu X, Hu Y, Xie X, Chang H, Lou L, Shen X. miR-145 suppresses breast cancer cell migration by targeting FSCN-1 and inhibiting epithelial-mesenchymal transition. Am J Transl Res. 2016;8:3106–14.

    PubMed  PubMed Central  Google Scholar 

  48. Ding YZC, Zhang J, Zhang N, Li T, Fang J, Zhang Y, Zuo F, Tao Z, Tang S, Zhu W, Chen H, Sun X. miR-145 inhibits proliferation and migration of breast cancer cells by directly or indirectly regulating TGF-β1 expression. Int J Oncol. 2017;50:1701–10.

    Article  PubMed  Google Scholar 

  49. Enders KO, Ng RL, Vivian Shin Y, Hong Chuan Jin, Candy Leung PH, Edmond Ma SK, Roberta Pang, Daniel Chua, Kent-Man Chu, Law WL, Simon Law YK, Ronnie Poon TP, Ava Kwong. Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS One. 2013;8:e53141.

    Article  Google Scholar 

  50. Chengcao Sun MS, Shujun Li, Xiaodong Sun, Cuili Yang, Yongyong Xi, Liang Wang, Feng Zhang, Yongyi Bi, Yunfeng Fu, Dejia Li. Hsa-miR-139-5p inhibits proliferation and causes apoptosis associated with down-regulation of c-Met. Oncotarget. 2015;6:39756–92.

    PubMed  PubMed Central  Google Scholar 

  51. Yonemori MSN, Yoshino H, Matsushita R, Miyamoto K, Nakagawa M, Enokida H. Dual tumor-suppressors miR-139-5p and miR-139-3p targeting matrix metalloprotease 11 in bladder cancer. Cancer Sci. 2016;107:1233–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou QHL, Zhou YX, Li Y. MiR-195 suppresses cervical cancer migration and invasion through targeting Smad3. Int J Gynecol Cancer. 2016;26:817–24.

    Article  PubMed  Google Scholar 

  53. Zhang XXJ, Jiang T, Liu G, Wang D, Lu Y. MicroRNA-195 suppresses colorectal cancer cells proliferation via targeting FGF2 and regulating Wnt/β-catenin pathway. Am J Cancer Res. 2016;6:2631–40.

    PubMed  PubMed Central  Google Scholar 

  54. Srivastava AGH, Dimtchev A, Ramalinga M, Chijioke J, Marian C, Oermann EK, Uhm S, Kim JS, Chen LN, Li X, Berry DL, Kallakury BV, Chauhan SC, Collins SP, Suy S, Kumar D. MicroRNA profiling in prostate cancer–the diagnostic potential of urinary miR-205 and miR-214. PLoS One. 2013;8:e76994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Salajegheh AVH, Rahman Md A, Amin M, Smith RA, Lam AK. Modulatory role of miR-205 in angiogenesis and progression of thyroid cancer. J Mol Endocrinol. 2015;55:183–96.

    Article  CAS  PubMed  Google Scholar 

  56. Wang PMX, Huang Y, Lv Z, Liu J, Wang G, Meng W, Xue S, Zhang Q, Zhang P, Chen G. MicroRNA-497 inhibits thyroid cancer tumor growth and invasion by suppressing BDNF. Oncotarget. 2017;8:2825–34.

    PubMed  Google Scholar 

  57. Zhang YZZ, Li Z, Gong D, Zhan B, Man X, Kong C. MicroRNA-497 inhibits the proliferation, migration and invasion of human bladder transitional cell carcinoma cells by targeting E2F3. Oncol Rep. 2016;36:1293–300.

    Article  CAS  PubMed  Google Scholar 

  58. Feng Y KY, He Y, Liu J, Liang B, Yang P, Yu Z. MicroRNA-99a acts as a tumor suppressor and is down-regulated in bladder cancer. BMC Urol. 14 2014

  59. Yu SHZC, Dong FS, Zhang YM. miR-99a suppresses the metastasis of human non-small cell lung cancer cells by targeting AKT1 signaling pathway. J Cell Biochem. 2015;116:268–76.

    Article  CAS  PubMed  Google Scholar 

  60. Huang HGLX, Wu S, Jian B. MiR-99a inhibits cell proliferation and tumorigenesis through targeting mTOR in human anaplastic thyroid cancer. Asian Pac J Cancer Prev. 2015;16:4937–44.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balal Sadeghi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 11 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhami, M., Haghdoost, A.A., Sadeghi, B. et al. Candidate miRNAs in human breast cancer biomarkers: a systematic review. Breast Cancer 25, 198–205 (2018). https://doi.org/10.1007/s12282-017-0814-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-017-0814-8

Keywords

Navigation