Skip to main content
Log in

The emerging role of breast tomosynthesis

  • Review Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Digital breast tomosynthesis (DBT) is a new modality that aids in breast cancer detection. It is a pseudo-three-dimensional digital mammography imaging system that produces a series of 1-mm-slice images with multiple very low-dose X-ray projections to reveal the inner architecture of the breast after eliminating interference from overlapping breast tissue. This review article provides an overview of the current and potential use of DBT. The illustrations and discussion are based on our experience with the Selenia Dimensions (Hologic, USA) DBT system approved by the US Food and Drug Administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ziedes des Plantes B.G.: Eine Neue Methode Zur Diffenzierung in der Rontgenographie (Planigraphie) (in German). Acta Radiol. 1932;13:182–92.

    Google Scholar 

  2. Niklason LT, Christian BT, Niklason LE, et al. Digital tomosynthesis in breast imaging. Radiology. 1997;205:399–406.

    CAS  PubMed  Google Scholar 

  3. Rafferty EA. Digital mammography: novel applications. Radiol Clin N Am. 2007;45:831–43.

    Article  PubMed  Google Scholar 

  4. Feng SS, Sechopoulos I. Clinical digital breast tomosynthesis system: dosimetric characterization. Radiology. 2012;263:35–42.

    Article  PubMed  Google Scholar 

  5. Olgar T, Kahn T, Gosch D. Average glandular dose in digital mammography and breast tomosynthesis. Rofo. 2012;184:911–8.

    Article  CAS  PubMed  Google Scholar 

  6. Ren B, Ruth C, Wu T, et al. A new generation FFDM/tomosynthesis fusion system with selenium detector. Proc SPIE. 2010;7622:76211B–20B.

    Google Scholar 

  7. Machida H, Yuhara T, Mori T, Ueno E, Moribe Y, Sabol JM. Optimizing parameters for flat-panel detector digital tomosynthesis. Radiographics. 2010;30:549–62.

    Article  PubMed  Google Scholar 

  8. American College of Radiology. Breast imaging reporting and data system (BI-RADS). 4th ed. Reston: American College of Radiology; 2003.

    Google Scholar 

  9. Burrell HC, Sibbering DM, Wilson AR, et al. Screening interval breast cancers: mammographic features and prognosis factors. Radiology. 1996;199:811–7.

    CAS  PubMed  Google Scholar 

  10. Rangayyan RM, Banik S, Desautels JE. Computer-aided detection of architectural distortion in prior mammograms of interval cancer. J Digit Imaging. 2010;23:611–31.

    Article  PubMed  Google Scholar 

  11. Nemoto M, Honmura S, Shimizu A, Furukawa D, Kobatake H, Nawano S. A pilot study of architectural distortion detection in mammograms based on characteristics of line shadows. Int J Comput Assist Radiol Surg. 2009;4:27–36.

    Article  PubMed  Google Scholar 

  12. Biswas SK, Mukherjee DP. Recognizing architectural distortion in mammogram: a multiscale texture modeling approach with GMM. IEEE Trans Biomed Eng. 2011;58:2023–30.

    Article  PubMed  Google Scholar 

  13. Teertstra HJ, Loo CE, van den Bosch MA, et al. Breast tomosynthesis in clinical practice: initial results. Eur Radiol. 2010;20:16–24.

    Article  PubMed  Google Scholar 

  14. Uematsu T, Kasami M. MR imaging findings of benign and malignant circumscribed breast masses: part 1. Solid circumscribed masses. Jpn J Radiol. 2009;27:395–404.

    Article  PubMed  Google Scholar 

  15. Uematsu T, Kasami M. MR imaging findings of benign and malignant circumscribed breast masses: part 2. Cystic circumscribed masses. Jpn J Radiol. 2009;27:405–9.

    Article  PubMed  Google Scholar 

  16. Andersson I, Ikeda DM, Zackrisson S, et al. Breast tomosynthesis and digital mammography: a comparison of breast cancer visibility and BIRADS classification in a population of cancers with subtle mammographic findings. Eur Radiol. 2008;18:2817–25.

    Article  PubMed  Google Scholar 

  17. Spangler ML, Zuley ML, Sumkin JH, et al. Detection and classification of calcifications on digital breast tomosynthesis and 2D digital mammography: a comparison. AJR Am J Roentgenol. 2011;196:320–4.

    Article  PubMed  Google Scholar 

  18. Kopans D, Gavenonis S, Halpern E, Moore R. Calcifications in the breast and digital breast tomosynthesis. Breast J. 2011;17:638–44.

    Article  PubMed  Google Scholar 

  19. Timberg P, Båth M, Andersson I, Mattsson S, Tingberg A, Ruschin M. In-plane visibility of lesions using breast tomosynthesis and digital mammography. Med Phys. 2010;37:5618–26.

    Article  CAS  PubMed  Google Scholar 

  20. Poplack SP, Tosteson TD, Kogel CA, Nagy HM. Digital breast tomosynthesis: initial experience in 98 women with abnormal digital screening mammography. AJR Am J Roentgenol. 2007;189:616–23.

    Article  PubMed  Google Scholar 

  21. Zhou J, Zhao B, Zhao W. A computer simulation platform for the optimization of a breast tomosynthesis system. Med Phys. 2007;34:1098–109.

    Article  PubMed  Google Scholar 

  22. Wallis MG, Moa E, Zanca F, Leifland K, Danielsson M. Two-view and single-view tomosynthesis versus full-field digital mammography: high-resolution X-ray imaging observer study. Radiology. 2012;262:788–96.

    Article  PubMed  Google Scholar 

  23. Svahn TM, Chakraborty DP, Ikeda D, et al. Breast tomosynthesis and digital mammography: a comparison of diagnostic accuracy. Br J Radiol. 2012;85(1019):e1074–82. doi:10.1259/bjr/53282892.

    Article  CAS  PubMed  Google Scholar 

  24. Saunders RS Jr, Samei E, Lo JY, Baker JA. Can compression be reduced for breast tomosynthesis? Monte Carlo study on mass and microcalcification conspicuity in tomosynthesis. Radiology. 2009;251:673–82.

    Article  PubMed  Google Scholar 

  25. Förnvik D, Andersson I, Svahn T, Timberg P, Zackrisson S, Tingberg A. The effect of reduced breast compression in breast tomosynthesis: human observer study using clinical cases. Radiat Prot Dosimetry. 2010;139:118–23.

    Article  PubMed  Google Scholar 

  26. Tagliafico A, Astengo D, Cavagnetto F, et al. One-to-one comparison between digital spot compression view and digital breast tomosynthesis. Eur Radiol. 2012;22:539–44.

    Article  PubMed  Google Scholar 

  27. Hakim CM, Chough DM, Ganott MA, Sumkin JH, Zuley ML, Gur D. Digital breast tomosynthesis in the diagnostic environment: a subjective side-by-side review. AJR Am J Roentgenol. 2010;195:W172–6.

    Article  PubMed  Google Scholar 

  28. Gur D, Zuley ML, Anello MI, et al. Dose reduction in digital breast tomosynthesis (DBT) screening using synthetically reconstructed projection images: an observer performance study. Acad Radiol. 2012;19:166–71.

    Article  PubMed  Google Scholar 

  29. Michell MJ, Iqbal A, Wasan RK, et al. A comparison of the accuracy of film-screen mammography, full-field digital mammography, and digital breast tomosynthesis. Clin Radiol. 2012;67:976–81.

    Article  CAS  PubMed  Google Scholar 

  30. Carney PA, Miglioretti DL, Yankaskas BC, et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med. 2003;138:168–75.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayoshi Uematsu.

About this article

Cite this article

Uematsu, T. The emerging role of breast tomosynthesis. Breast Cancer 20, 204–212 (2013). https://doi.org/10.1007/s12282-013-0456-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-013-0456-4

Keywords

Navigation