Skip to main content

Advertisement

Log in

Maximizing Yield and Speed of Fungal Pathogen Identification with Molecular Testing Performed Directly on Patient Specimens

  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Molecular assays for fungal pathogen detection directly in patient specimens represent valuable diagnostic tools, with the potential to increase sensitivity and reduce turnaround time. This review highlights existing and emerging molecular methods for the diagnosis of fungal infections, their clinical performance, limitations, and knowledge gaps.

Recent Findings

Broad-range PCR and metagenomic sequencing detect diverse pathogens but have not replaced traditional methods. Limitations are cost, availability, and limited real-world performance data. Multi-target panels and organism-specific assays can provide increased sensitivity and, frequently, speed. Some single- or multi-target assays are commercially available to many clinical laboratories.

Summary

Molecular diagnostic methods for fungal pathogens are diverse; complement culture, stains, and biomarkers; and increasingly fulfill case definitions. To maximize yield, assay selection should be guided by suspected organisms and patient-specific risk factors. Collaboration between patient-facing providers and laboratorians/pathologists promotes optimal testing strategies and the deployment of more rapid and specific assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data availability statement is not applicable for the review article.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46(12):1813–21.

    Article  PubMed  Google Scholar 

  2. Donnelly JP, Chen SC, Kauffman CA, Steinbach WJ, Baddley JW, Verweij PE, et al. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis. 2020;71(6):1367–76.

    Article  PubMed  Google Scholar 

  3. • Lieberman JA, Bryan A, Mays JA, Stephens K, Kurosawa K, Mathias PC, et al. High Clinical Impact of Broad-Range Fungal PCR in Suspected Fungal Sinusitis. J Clin Microbiol. 2021 Aug 18;JCM0095521. This retrospective study compared the performance of broad-range fungal to traditional methods including culture, direct stain, and intraoperative frozen section pathology in a cohort of 52 patients evaluated for invasive fungal sinusitis, including 34 (65%) with proven/probable invasive fungal disease. PCR and culture combined offered superior sensitivity (90%) compared to either PCR alone (85%) or culture alone (67.5%). Molecular methods were significantly more sensitive and specific than staining methods. PCR had equivalent sensitivity on FFPE and fresh tissue (42% vs 35%, p > 0.05) and had faster turnaround time than culture.

  4. Gomez CA, Budvytiene I, Zemek AJ, Banaei N. Performance of targeted fungal sequencing for culture-independent diagnosis of invasive fungal disease. Clin Infect Dis. 2017;65(12):2035–41.

    Article  PubMed  Google Scholar 

  5. •• Senchyna F, Hogan CA, Murugesan K, Moreno A, Ho DY, Subramanian A, et al. Clinical accuracy and impact of plasma cell-free DNA fungal polymerase chain reaction panel for noninvasive diagnosis of fungal infection. Clin Infect Dis. 2021;73(9):1677–84. This study demonstrated how to implement a multi-target PCR amplification of multiple fungal targets from the cell-free DNA plasma fraction and evaluated assay performance. Sensitivity was 56.5–69% and specificity was >99% with median turnaround time of 3 days. These results suggest real-world utility as a non-invasive diagnostic tool.

    Article  CAS  PubMed  Google Scholar 

  6. Roland LT, Humphreys IM, Le CH, Babik JM, Bailey CE, Ediriwickrema LS, et al. Diagnosis, prognosticators, and management of acute invasive fungal rhinosinusitis: multidisciplinary consensus statement and evidence-based review with recommendations. Int Forum Allergy Rhinol. 2023.

  7. Jiang S, Chen Y, Han S, Lv L, Li L. Next-generation sequencing applications for the study of fungal pathogens. Microorganisms. 2022;10(10):1882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lucignano B, Cento V, Agosta M, Ambrogi F, Albitar-Nehme S, Mancinelli L, et al. Effective rapid diagnosis of bacterial and fungal bloodstream infections by T2 magnetic resonance technology in the pediatric population. J Clin Microbiol. 2022;60(10):e0029222.

    Article  PubMed  Google Scholar 

  9. Comacle P, Belaz S, Jegoux F, Ruaux C, Le Gall F, Gangneux JP, et al. Contribution of molecular tools for the diagnosis and epidemiology of fungal chronic rhinosinusitis. Med Mycol. 2016;54(8):794–800.

    Article  PubMed  Google Scholar 

  10. Lieberman JA, Fiorito J, Ichikawa D, Fang FC, Rakita RM, Bourassa L. Long-term carriage of Medicopsis romeroi, an agent of black-grain mycetoma, presenting as phaeohyphomycosis in a renal transplant patient. Mycopathologia. 2019;184(5):671–6.

    Article  CAS  PubMed  Google Scholar 

  11. Bongomin F, Gago S, Oladele RO, Denning DW. Global and multi-national prevalence of fungal diseases—estimate precision. J Fungi (Basel) [Internet]. 2017 Oct 18 [cited 2020 Jul 31];3(4). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5753159/

  12. U.S. Food and Drug Administration. CLIA categorizations [Internet]. FDA. FDA; 2020 [cited 2023 Feb 21]. Available from: https://www.fda.gov/medical-devices/ivd-regulatory-assistance/clia-categorizations

  13. Centers for Disease Control and Prevention. CLIA test complexities [Internet]. 2020 [cited 2023 Feb 23]. Available from: https://www.cdc.gov/clia/test-complexities.html

  14. Burd EM. Validation of laboratory-developed molecular assays for infectious diseases. Clin Microbiol Rev. 2010;23(3):550–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sattler J, Noster J, Brunke A, Plum G, Wiegel P, Kurzai O, et al. Comparison of two commercially available qPCR kits for the detection of Candida auris. J Fungi (Basel). 2021;7(2):154.

    Article  CAS  PubMed  Google Scholar 

  16. White PL, Bretagne S, Klingspor L, Melchers WJG, McCulloch E, Schulz B, et al. Aspergillus PCR: one step closer to standardization. J Clin Microbiol. 2010;48(4):1231–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Babouee Flury B, Weisser M, Prince SS, Bubendorf L, Battegay M, Frei R, et al. Performances of two different panfungal PCRs to detect mould DNA in formalin-fixed paraffin-embedded tissue: what are the limiting factors? BMC Infect Dis. 2014;18(14):692.

    Article  Google Scholar 

  18. Kerkhoff AD, Rutishauser RL, Miller S, Babik JM. Clinical utility of universal broad-range PCR amplicon sequencing for pathogen identification: a retrospective cohort study. Clin Infect Dis. 2020.

  19. Basein T, Gardiner BJ, Andujar Vazquez GM, Joel Chandranesan AS, Rabson AR, Doron S, et al. Microbial identification using dna target amplification and sequencing: clinical utility and impact on patient management. Open Forum Infect Dis. 2018;5(11):ofy257.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jillwin J, Rudramurthy SM, Singh S, Bal A, Das A, Radotra B, et al. Molecular identification of pathogenic fungi in formalin-fixed and paraffin-embedded tissues. J Med Microbiol. 2021;70(2).

  21. Richter SS, Otiso J, Goje OJ, Vogel S, Aebly J, Keller G, et al. Prospective evaluation of molecular assays for diagnosis of vaginitis. J Clin Microbiol. 2019;58(1):e01264-e1319.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lee S, Yun NR, Kim KH, Jeon JH, Kim EC, Chung DH, et al. Discrepancy between histology and culture in filamentous fungal infections. Med Mycol. 2010;48(6):886–8.

    Article  PubMed  Google Scholar 

  23. Sangoi AR, Rogers WM, Longacre TA, Montoya JG, Baron EJ, Banaei N. Challenges and pitfalls of morphologic identification of fungal infections in histologic and cytologic specimens. Am J Clin Pathol. 2009;131(3):364.

    Article  PubMed  Google Scholar 

  24. Baron EJ, Miller JM, Weinstein MP, Richter SS, Gilligan PH, Thomson RB, et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)(a). Clin Infect Dis. 2013;57(4):e22-121.

    Article  PubMed  Google Scholar 

  25. Clark ST, Yau YCW, Campigotto A, Gharabaghi F, Richardson SE, Tadros M. Assessment of panfungal PCR performance with formalin-fixed paraffin-embedded tissue specimens†. Med Mycol. 2022;60(2):myac004.

    Article  CAS  PubMed  Google Scholar 

  26. Al-Soud WA, Rådström P. Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol. 2001;39(2):485–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. • Imbert S, Portejoie L, Pfister E, Tauzin B, Revers M, Uthurriague J, et al. A multiplex PCR and DNA-sequencing workflow on serum for the diagnosis and species identification for invasive aspergillosis and mucormycosis. J Clin Microbiol. 2023;61(1):e0140922. Demonstration of paired multi-target commercial kits for molecular detection of multiple Aspergillus and mucormycete species infection, including the presence of select azole-resistance mutations in the A. fumigatus cyp51A gene. Sensitivity for probable/proven invasive aspergillosis was 85.7%, but much lower in localized disease (28.6–33.3%).

    Article  CAS  PubMed  Google Scholar 

  28. Blauwkamp TA, Thair S, Rosen MJ, Blair L, Lindner MS, Vilfan ID, et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat Microbiol. 2019;4(4):663–74.

    Article  CAS  PubMed  Google Scholar 

  29. Wandell GM, Miller C, Rathor A, Wai TH, Guyer RA, Schmidt RA, et al. A multi-institutional review of outcomes in biopsy-proven acute invasive fungal sinusitis. Int Forum Allergy Rhinol. 2018;8(12):1459–68.

    Article  PubMed  Google Scholar 

  30. Lockhart SR, Guarner J. Emerging and reemerging fungal infections. Semin Diagn Pathol. 2019;36(3):177–81.

    Article  PubMed  Google Scholar 

  31. Rossi A, Chavez J, Iverson T, Hergert J, Oakeson K, LaCross N, et al. Candida auris discovery through community wastewater surveillance during healthcare outbreak, Nevada, USA, 2022. Emerg Infect Dis. 2023;29(2):422–5.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rowlands J, Dufort E, Chaturvedi S, Zhu Y, Quinn M, Bucher C, et al. Candida auris admission screening pilot in select units of New York City healthcare facilities, 2017–2019. Am J Infect Control. 2023;S0196–6553(23):00048–52.

    Google Scholar 

  33. Chen YC, Eisner JD, Kattar MM, Rassoulian-Barrett SL, LaFe K, Yarfitz SL, et al. Identification of medically important yeasts using PCR-based detection of DNA sequence polymorphisms in the internal transcribed spacer 2 region of the rRNA genes. J Clin Microbiol. 2000;38(6):2302–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wilson MR, Sample HA, Zorn KC, Arevalo S, Yu G, Neuhaus J, et al. Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis. N Engl J Med. 2019;380(24):2327–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ramachandran PS, Wilson MR. Metagenomics for neurological infections — expanding our imagination. Nat Rev Neurol. 2020;16(10):547–56.

    Article  PubMed  PubMed Central  Google Scholar 

  36. • Lee RA, Al Dhaheri F, Pollock NR, Sharma TS. Assessment of the clinical utility of plasma metagenomic next-generation sequencing in a pediatric hospital population. J Clin Microbiol. 2020 May 6. This single institution study examined the real-world performance of plasma cell-free DNA mNGS and demonstrated a positivity rate of 49%. Half of negative mNGS tests were true negatives and 14% impacted clinical management. Four invasive fungal infections were detected with a second, false positive Aspergillus sp. (A. oryzae) detected in one patient.

  37. •• Hogan CA, Yang S, Garner OB, Green DA, Gomez CA, Dien Bard J, et al. Clinical impact of metagenomic next-generation sequencing of plasma cell-free DNA for the diagnosis of infectious diseases: a multicenter retrospective cohort study. Clin Infect Dis. 2020 Jan 14. This multi-institutional study examined real-world performance and clinical impact of plasma cell-free DNA mNGS. Although not focused on fungal pathogens (only 3 positive cases, 1 plus false positive), the paper provides important lessons on utilization of this emerging diagnostic assay. While overall assay positivity was 61%, only a few of these results (14%) impacted care; fungal pathogens were likely to prompt a change in management.

  38. Rickerts V, Khot PD, Myerson D, Ko DL, Lambrecht E, Fredricks DN. Comparison of quantitative real time PCR with Sequencing and ribosomal RNA-FISH for the identification of fungi in formalin fixed, paraffin-embedded tissue specimens. BMC Infect Dis. 2011;26(11):202.

    Article  Google Scholar 

  39. Chen YC, Eisner JD, Kattar MM, Rassoulian-Barrett SL, Lafe K, Bui U, et al. Polymorphic internal transcribed spacer region 1 DNA sequences identify medically important yeasts. J Clin Microbiol. 2001;39(11):4042–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lysen C, Silva-Flannery L, Zaki SR, Gary JM, Lockhart SR. Performance evaluation of fungal DNA PCR amplification from formalin-fixed paraffin-embedded tissue for diagnosis: experience of a tertiary reference laboratory. Mycoses. 2021;64(6):603–11.

    Article  CAS  PubMed  Google Scholar 

  41. Miller S, Naccache SN, Samayoa E, Messacar K, Arevalo S, Federman S, et al. Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid. Genome Res. 2019;29(5):831–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hong DK, Blauwkamp TA, Kertesz M, Bercovici S, Truong C, Banaei N. Liquid biopsy for infectious diseases: sequencing of cell-free plasma to detect pathogen DNA in patients with invasive fungal disease. Diagn Microbiol Infect Dis. 2018;92(3):210–3.

    Article  CAS  PubMed  Google Scholar 

  43. Armstrong AE, Rossoff J, Hollemon D, Hong DK, Muller WJ, Chaudhury S. Cell-free DNA next-generation sequencing successfully detects infectious pathogens in pediatric oncology and hematopoietic stem cell transplant patients at risk for invasive fungal disease. Pediatr Blood Cancer. 2019;66(7):e27734.

    Article  PubMed  Google Scholar 

  44. Camargo JF, Ahmed AA, Lindner MS, Morris MI, Anjan S, Anderson AD, et al. Next-generation sequencing of microbial cell-free DNA for rapid noninvasive diagnosis of infectious diseases in immunocompromised hosts. F1000Res [Internet]. 2020 Jan 6 [cited 2020 Jul 13];8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883395/

  45. •• Hill JA, Dalai SC, Hong DK, Ahmed AA, Ho C, Hollemon D, et al. Liquid biopsy for invasive mold infections in hematopoietic cell transplant recipients with pneumonia through next-generation sequencing of microbial cell-free DNA in plasma. Clin Infect Dis. 2021;73(11):e3876–83. This study is one of the largest cohorts examining the diagnostic performance and clinical utility of mNGS specifically for fungal infection. In the 75 patients with proven/probable fungal disease, mNGS had a clinical sensitivity of 51% (95% CI 39–62%) and 95% specificity (95% CI 82–100%). Sensitivity was higher for non-Aspergillus IFD vs Aspergillus IFD (79% vs 31%) and diagnostic yield in galactomannan serum positive cases was only 28% (45). The study proposes mNGS may be a helpful adjunct method for IFD diagnosis and that the high specificity may help rule out disease. The study was a collaboration with the corporate laboratory performing the assay.

    Article  CAS  PubMed  Google Scholar 

  46. Glasgow HL, Cruz K, Murphy SC. Reverse-transcription PCR increases sensitivity of broad-range fungal detection in bronchoalveolar lavage fluid. Med Mycol. 2021;60(1):myab061.

    Article  PubMed  Google Scholar 

  47. Cummings LA, Kurosawa K, Hoogestraat DR, SenGupta DJ, Candra F, Doyle M, et al. Clinical next generation sequencing outperforms standard microbiological culture for characterizing polymicrobial samples. Clin Chem. 2016;62(11):1465–73.

    Article  CAS  PubMed  Google Scholar 

  48. Larkin PMK, Lawson KL, Contreras DA, Le CQ, Trejo M, Realegeno S, et al. Amplicon-based next-generation sequencing for detection of fungi in formalin-fixed, paraffin-embedded tissues: correlation with histopathology and clinical applications. J Mol Diagn. 2020;22(10):1287–93.

    Article  CAS  PubMed  Google Scholar 

  49. Trecourt A, Rabodonirina M, Mauduit C, Traverse-Glehen A, Devouassoux-Shisheboran M, Meyronet D, et al. Fungal integrated histomolecular diagnosis using targeted next-generation sequencing on formalin-fixed paraffin-embedded tissues. J Clin Microbiol. 2023;61(3):e0152022.

    Article  PubMed  Google Scholar 

  50. Danby CS, Althouse AD, Hillier SL, Wiesenfeld HC. Nucleic acid amplification testing compared with cultures, gram stain, and microscopy in the diagnosis of vaginitis. J Low Genit Tract Dis. 2021;25(1):76–80.

    Article  PubMed  Google Scholar 

  51. Schwebke JR, Taylor SN, Ackerman R, Schlaberg R, Quigley NB, Gaydos CA, et al. Clinical validation of the aptima bacterial vaginosis and Aptima Candida/Trichomonas vaginitis assays: results from a prospective multicenter clinical study. J Clin Microbiol. 2020;58(2):e01643-e1719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Byun SW, Park YJ, Hur SY. Affirm VPIII microbial identification test can be used to detect gardnerella vaginalis, Candida albicans and trichomonas vaginalis microbial infections in Korean women. J Obstet Gynaecol Res. 2016;42(4):422–6.

    Article  PubMed  Google Scholar 

  53. Aguirre-Quiñonero A, de Castillo-Sedano IS, Calvo-Muro F, Canut-Blasco A. Accuracy of the BD MAXTM vaginal panel in the diagnosis of infectious vaginitis. Eur J Clin Microbiol Infect Dis. 2019;38(5):877–82.

    Article  PubMed  Google Scholar 

  54. Sherrard J. Evaluation of the BD MAXTM Vaginal Panel for the detection of vaginal infections in a sexual health service in the UK. Int J STD AIDS. 2019;30(4):411–4.

    Article  PubMed  Google Scholar 

  55. Petrikkos G, Makrilakis K, Pappas S. Affirm VP III in the detection and identification of Candida species in vaginitis. Int J Gynaecol Obstet. 2007;96(1):39–40.

    Article  CAS  PubMed  Google Scholar 

  56. Van TT, Kim TH, Butler-Wu SM. Evaluation of the Biofire FilmArray meningitis/encephalitis assay for the detection of Cryptococcus neoformans/gattii. Clin Microbiol Infect. 2020;26(10):1375–9.

    Article  CAS  PubMed  Google Scholar 

  57. Bridge S, Hullsiek KH, Nerima C, Evans EE, Nuwagira E, Stadelman AM, et al. Evaluation of the BioFire® FilmArray® Meningitis/Encephalitis panel in an adult and pediatric Ugandan population. J Mycol Med. 2021;31(3):101170.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lewis PO, Lanier CG, Patel PD, Krolikowski WD, Krolikowski MA. False negative diagnostic errors with polymerase chain reaction for the detection of cryptococcal meningoencephalitis. Med Mycol. 2020;58(3):408–10.

    Article  CAS  PubMed  Google Scholar 

  59. Chong BSW, Kennedy KJ. Comparison of a commercial real-time PCR panel to routine laboratory methods for the diagnosis of meningitis-encephalitis. Pathology. 2021;53(5):635–8.

    Article  CAS  PubMed  Google Scholar 

  60. Klein M, Bacher J, Barth S, Atrzadeh F, Siebenhaller K, Ferreira I, et al. Multicenter evaluation of the Unyvero platform for testing bronchoalveolar lavage fluid. J Clin Microbiol. 2021;59(3):e02497-e2520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Neely LA, Audeh M, Phung NA, Min M, Suchocki A, Plourde D, et al. T2 Magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci= Transl Med. 2013;5(182):182ra54-182ra54.

    PubMed  Google Scholar 

  62. Mylonakis E, Clancy CJ, Ostrosky-Zeichner L, Garey KW, Alangaden GJ, Vazquez JA, et al. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: a clinical trial. Clin Infect Dis. 2015;60(6):892–9.

    Article  CAS  PubMed  Google Scholar 

  63. Beyda ND, Amadio J, Rodriguez JR, Malinowski K, Garey KW, Wanger A, et al. In vitro evaluation of BacT/Alert FA blood culture bottles and T2Candida assay for detection of Candida in the presence of antifungals. J Clin Microbiol. 2018;56(8):e00471-e518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Patch ME, Weisz E, Cubillos A, Estrada SJ, Pfaller MA. Impact of rapid, culture-independent diagnosis of candidaemia and invasive candidiasis in a community health system. J Antimicrob Chemother. 2018;73(4):iv27-30.

    Article  CAS  PubMed  Google Scholar 

  65. Mylonakis E, Zacharioudakis IM, Clancy CJ, Nguyen MH, Pappas PG. Efficacy of T2 magnetic resonance assay in monitoring candidemia after initiation of antifungal therapy: the serial therapeutic and antifungal monitoring protocol (STAMP) trial. J Clin Microbiol. 2018;56(4):e01756-e1817.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Monday LM, Parraga Acosta T, Alangaden G. T2Candida for the Diagnosis and management of invasive candida infections. J Fungi (Basel). 2021;7(3):178.

    Article  PubMed  Google Scholar 

  67. Wondimu B, Bradley B, Lieberman JA, Cohen S, Bui L, Reddi D. Cokeromyces recurvatus incidentally found in a patient with gastric outlet obstruction. Mycopathologia. 2022;187(5–6):605–10.

    Article  PubMed  Google Scholar 

  68. Tansarli GS, Eschbacher J, Schroeder LK, SenGupta D, Lieberman JA. Mycetohabitans rhizoxinica in patients with rhinocerebral mucormycosis due to Rhizopus microsporus. Mycopathologia. 2023.

  69. Springer J, Goldenberger D, Schmidt F, Weisser M, Wehrle-Wieland E, Einsele H, et al. Development and application of two independent real-time PCR assays to detect clinically relevant Mucorales species. J Med Microbiol. 2016;65(3):227–34.

    Article  CAS  PubMed  Google Scholar 

  70. • Scharmann U, Kirchhoff L, Hain A, Buer J, Koldehoff M, Steinmann J, et al. Evaluation of three commercial PCR assays for the detection of azole-resistant Aspergillus fumigatus from respiratory samples of immunocompromised patients. J Fungi (Basel). 2021;7(2):132. Retrospective comparison of three commercially available kits for detection of Aspergillus spp. and cyp51A resistance mutations using residual patient specimens (N = 103). Sensitivities were 60%, 64%, and 80% while specificities were 91%, 97%, and 73%. Each kit targets different resistance mutations and all three detected the two known resistant organisms directly in bronchoalveolar lavage.

    Article  CAS  PubMed  Google Scholar 

  71. • Mikulska M, Furfaro E, Dettori S, Giacobbe DR, Magnasco L, Dentone C, et al. Aspergillus-PCR in bronchoalveolar lavage - diagnostic accuracy for invasive pulmonary aspergillosis in critically ill patients. Mycoses. 2022;65(4):411–8. This study evaluated performance of AsperGenius PCR in three cohorts: ICU patients with COVID-19; ICU patients without COVID-19; and immunocompromised patients. Sensitivity ranged from 40% (ICU COVID-19 patients) to 92% (immunocompromised patients) with overall specificity of 99%.

    Article  CAS  PubMed  Google Scholar 

  72. Chong GM, van der Beek MT, von dem Borne PA, Boelens J, Steel E, Kampinga GA, et al. PCR-based detection of Aspergillus fumigatus Cyp51A mutations on bronchoalveolar lavage: a multicentre validation of the AsperGenius assay® in 201 patients with haematological disease suspected for invasive aspergillosis. J Antimicrob Chemother. 2016;71(12):3528–35.

    Article  CAS  PubMed  Google Scholar 

  73. Millon L, Larosa F, Lepiller Q, Legrand F, Rocchi S, Daguindau E, et al. Quantitative polymerase chain reaction detection of circulating DNA in serum for early diagnosis of mucormycosis in immunocompromised patients. Clin Infect Dis. 2013;56(10):e95-101.

    Article  CAS  PubMed  Google Scholar 

  74. Millon L, Herbrecht R, Grenouillet F, Morio F, Alanio A, Letscher-Bru V, et al. Early diagnosis and monitoring of mucormycosis by detection of circulating DNA in serum: retrospective analysis of 44 cases collected through the French Surveillance Network of Invasive Fungal Infections (RESSIF). Clin Microbiol Infect. 2016;22(9):810.e1-810.e8.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang SX, Babady NE, Hanson KE, Harrington AT, Larkin PMK, Leal SM, et al. Recognition of diagnostic gaps for laboratory diagnosis of fungal diseases: expert opinion from the fungal diagnostics laboratories consortium (FDLC). J Clin Microbiol. 2021;59(7):e0178420.

    Article  PubMed  Google Scholar 

  76. Kilic A, Elliott S, Hester L, Palavecino E. Evaluation of the performance of DiaSorin molecular Pneumocystis jirovecii-CMV multiplex real-time PCR assay from bronchoalveolar lavage samples. J Mycol Med. 2020;30(2):100936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Albulushi K, Jung-Hynes B, Chen D. Detection of Pneumocystis jirovecii from clinical specimens utilizing a TaqMan-based real-time PCR assay on the Luminex ARIES. Curr Protoc. 2021;1(4):e95.

    Article  CAS  PubMed  Google Scholar 

  78. Moreno A, Epstein D, Budvytiene I, Banaei N. Accuracy of Pneumocystis jirovecii plasma cell-free DNA PCR for noninvasive diagnosis of pneumocystis pneumonia. J Clin Microbiol. 2022;60(5):e0010122.

    Article  PubMed  Google Scholar 

  79. Doyle L, Vogel S, Procop GW. Pneumocystis PCR: it is time to make PCR the test of choice. Open Forum Infect Dis. 2017;4(4):ofx193.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Singh A, Sharma B, Mahto KK, Meis JF, Chowdhary A. High-frequency direct detection of triazole resistance in Aspergillus fumigatus from patients with chronic pulmonary fungal diseases in India. J Fungi (Basel). 2020;6(2):67.

    Article  CAS  PubMed  Google Scholar 

  81. Steinmann J, Hamprecht A, Vehreschild MJGT, Cornely OA, Buchheidt D, Spiess B, et al. Emergence of azole-resistant invasive aspergillosis in HSCT recipients in Germany. J Antimicrob Chemother. 2015;70(5):1522–6.

    Article  CAS  PubMed  Google Scholar 

  82. Denning DW, Park S, Lass-Florl C, Fraczek MG, Kirwan M, Gore R, et al. High-frequency triazole resistance found In nonculturable Aspergillus fumigatus from lungs of patients with chronic fungal disease. Clin Infect Dis. 2011;52(9):1123–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dannaoui E, Gabriel F, Gaboyard M, Lagardere G, Audebert L, Quesne G, et al. Molecular diagnosis of invasive aspergillosis and detection of azole resistance by a newly commercialized PCR kit. J Clin Microbiol. 2017;55(11):3210–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pelzer BW, Seufert R, Koldehoff M, Liebregts T, Schmidt D, Buer J, et al. Performance of the AsperGenius® PCR assay for detecting azole resistant Aspergillus fumigatus in BAL fluids from allogeneic HSCT recipients: a prospective cohort study from Essen. West Germany Med Mycol. 2020;58(2):268–71.

    CAS  PubMed  Google Scholar 

  85. Postina P, Skladny J, Boch T, Cornely OA, Hamprecht A, Rath PM, et al. Comparison of two molecular assays for detection and characterization of Aspergillus fumigatus triazole resistance and Cyp51A mutations in clinical isolates and primary clinical samples of immunocompromised patientS. Front Microbiol. 2018;9:555.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hagiwara D, Takahashi H, Watanabe A, Takahashi-Nakaguchi A, Kawamoto S, Kamei K, et al. Whole-genome comparison of Aspergillus fumigatus strains serially isolated from patients with aspergillosis. J Clin Microbiol. 2014;52(12):4202–9.

    Article  PubMed  PubMed Central  Google Scholar 

  87. de Groot T, Hagen F, Vreuls W, Verweij PE, Chowdhary A, Meis JF. Genotyping of Aspergillus fumigatus in formalin-fixed paraffin-embedded tissues and serum samples from patients with invasive aspergillosis. Front Cell Infect Microbiol. 2018;8:377.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chang FM, Ou TY, Cheng WN, Chou ML, Lee KC, Chin YP, et al. Short-term exposure to fluconazole induces chromosome loss in Candida albicans: an approach to produce haploid cells. Fungal Genet Biol. 2014;70:68–76.

    Article  CAS  PubMed  Google Scholar 

  89. Biswas C, Chen SCA, Halliday C, Kennedy K, Playford EG, Marriott DJ, et al. Identification of genetic markers of resistance to echinocandins, azoles and 5-fluorocytosine in Candida glabrata by next-generation sequencing: a feasibility study. Clin Microbiol Infect. 2017;23(9):676.e7-676.e10.

    Article  CAS  PubMed  Google Scholar 

  90. Guimaraes MD, Marchiori E, Godoy MCB. Fungal infection mimicking lung cancer: a potential cause of misdiagnosis. AJR Am J Roentgenol. 2013;201(2):W364.

    Article  PubMed  Google Scholar 

  91. Stempak LM, Vogel SA, Richter SS, Wyllie R, Procop GW. Routine broad-range fungal polymerase chain reaction with DNA sequencing in patients with suspected mycoses does not add value and is not cost-effective. Arch Pathol Lab Med. 2019;143(5):634–8.

    Article  PubMed  Google Scholar 

  92. Walker TM, Miotto P, Köser CU, Fowler PW, Knaggs J, Iqbal Z, et al. The 2021 WHO catalogue of mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis. Lancet Microbe. 2022;3(4):e265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua A. Lieberman.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

All reported studies with human subjects performed by the author of this review have been previously published and complied with all applicable ethical standards and were approved by the Institutional Review Board (IRB) at the University of Washington, School of Medicine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lieberman, J.A., Bourassa, L.A. Maximizing Yield and Speed of Fungal Pathogen Identification with Molecular Testing Performed Directly on Patient Specimens. Curr Fungal Infect Rep 17, 214–225 (2023). https://doi.org/10.1007/s12281-023-00471-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-023-00471-3

Keywords

Navigation